The Significance of HEP Observations

Pekka K. Sinervo Department of Physics University of Toronto

20 March 2002

- 1 What is Significance?
- 2 Frequentist Approach
- 3 A Few Case Studies
- 4 Some Observations
- 5 Summary

March 02

What Do We Mean by Significance?

Typical HEP approach

- Have a set of observations
- We say the data are "statistically significant" when
 - We can use data to support a specific hypothesis, eg.
 - "We see a phenomenom not predicted by the Standard Model"
 - "We report the discovery of X"
 - The interpretation eliminates a number of competing hypotheses
 - The conclusion will not likely be altered with larger statistics or further analysis

Want a statistical framework that

- Measures "degree of belief"
- Ensures robust conclusions

A Frequentist Definition

Significance defined in context of "hypothesis testing"

- Have two hypotheses, H₀ and H₁,
 and possible set of observations X
 - Choose a "critical region", w, in the space of observations X
 - Define significance, α, as the probability of X ε w when H₀ is true
 - Define the power, 1-β, to be the probability of X ε w when H₁ is true

Typically, H₀ is "null" hypothesis

- In this language, an observation is "significant" when
 - Significance α is small & β is small

• Typically α < few 10⁻⁵

4

Some Comments on Formal Definition

Definition depends on

Choice of statistic X

- Left up to the experimenter as part of design
- More on that later

Choice of "critical region" w

- Depends on hypotheses
- Often chosen to minimize systematic uncertainties?
- Not necessarily defined in advance!

Definition of "probability"

- A frequentist definition
- Raises issue of how systematic uncertainties are managed

- Choice of α and β

- Matter of "taste" and precedent
- A small α is safe, but comes with less "discovery reach"

More fundamentally:

 Is this an adequate definition of "significance?"

March 02

The Choice of Statistic & Critical Region

- Choice of statistic motivated by specific experimental design
 - Informed by the measurement to be made
 - Critical region is chosen at the same time
 - Good example: E787/E949 search

 $K^+ \rightarrow \pi^+ \nu \nu$

♦ Look for $\pi^+ \rightarrow \mu^+ \nu$ decay

Define a "box" a priori

Expected 0.15±0.05 event bkgd

Only two events Observed

Significance 0.02%

Have used the "box" Since 1988

6

Optimal Tests: Neyman-Pearson

In some cases, possible to identify the "most powerful" test

Must involve only "simple" hypotheses (no free parameters)

- ✤ PDF's given by f_i(X)
- Must have two hypotheses
- For given α, can identify region to minimize β for alternative H₁

• Order observations by $I_N(X) \equiv f_0(X) / f_1(X)$

Can minimize β by choosing critical region as all X s.t. I_N(X) ≥ c_α

Chose c_{α} so that

 $\int \mathbf{f}_0(\mathbf{X}) d\mathbf{X} = \alpha$

7

Caveats to Neyman-Pearson

Neyman-Pearson limited

Only true for simple hypotheses

 Not for composite hypotheses (where unknown parameter)

Compares two hypotheses

- Depends on alternative hypothesis
- Makes results model-dependent

But does give some insight

The ratio I_N(X) is proportional to ratio of likelihoods

 $\mathsf{f}_0(\mathsf{X}) \,/\, \mathsf{f}_1(\mathsf{X}) \, \cong L_0(\mathsf{X}) \,/\, L_1(\mathsf{X})$

 Provides guidance for definition of effective tests

Definition of Critical Region

Challenge is not to bias choice of critical region with data

However, observer required to understand data

- Identify instrumental pathologies
- Identify unexpected backgrounds
- Estimate systematic uncertainties
- Verify stable run conditions
- Studies may lead to unconscious bias (see, eg. RPP plots!)

"Blind" analyses are popular

- Study data complementary to signal
- However, implementation varies
 - SNO's pure D₂O results set aside about 40% of data
 - Not clear that this really helps!
- Even E787/E949 reserve right to examine background rejection

Significance in Counting Experiments

Top quark search is textbook example

- By 1991, CDF had ruled out top quark with mass < 91 GeV/c²
- Searching for top quark pair production and decay into
 - Lepton + v + jets (20%)
 - Dilepton + v + jets (8%)

In a sample of 20 pb⁻¹, expected handful of events

- Large background from W + jets
- "Fake" b-quark tags

Definition of the Measurement

Defined clear strategy in 1990

- Identify lepton+jets and dilepton candidates
- Count "b" tags in lepton+jet events
 - Use two b-tagging algorithms
 - Use events with 1-2 jets as control
 - Signal sample events with ≥3 jets
 - Expected 3.5 evts (M_{top}=160 GeV/c²)

Observed **13** tagged "b jets" in 10 evts

7 SVX tags 6 lepton tags

Expect **5.4±0.4** tags from background

- For dileptons:

- Require 2 or more jets
- Expected 1.3 evts (M_{top}=160 GeV/c²)
- Observed 2 evts, bkd of 0.6±0.3 evts

Significance Calculation

- Calculated probability of background hypothesis
 - Dilepton significance α_{dil} = 0.12
 - Used MC calculation
 - Treated background uncertainty as a normally distributed uncertainty on acceptance
 - For lepton+jets, MC gives
 - SVX b tags: α_{SVX} = 0.032
 - Soft lepton b tags: α_{SLT} = 0.038
- To combine, take correlations in tags in background into account
 - Gives α_{tot} = 0.0026
 - If assume independent, then

 $\alpha_{tot} = \alpha_{dil} \alpha_{ljets} [1 - \ln(\alpha_{dil} \alpha_{ljets})]$ • Gives $\alpha_{tot} = 0.0088$

- Collaboration reported only "evidence for top quark...."
 - + Factor 2 more data -- α_{tot} = few 10⁻⁵

Power of the Top Quark Statistic

Choice of statistic driven by need to reduce background

- Note ε_{ijets} = 0.074 before b-tagging

- Predict 12 events signal and 60 events background
- Tagging efficiency 0.40
 - Background "efficiency" 0.09
- Definition of "power" problematic
 - Arbitrary
 - Power of lepton+jets selection?
 - Power of b-tagging?
 - A posteriori choice of X = $N_{tags} + N_{dil}$
 - Experimenter chooses "critical region" based on hypothesis
 - Lepton+jets Higgs search uses different selection
 - $W H \rightarrow I v b b$
- Usually characterized by sensitivity

Size of expected signal

Significance using Data Distributions

- Measurements often involve continuous observables
 - Can assess agreement with "null" hypothesis
 - Generally "goodness-of-fit" tests

Number of tests in common use

- Depends on choice of binning
- Limited to "large" statistics samples
 Bin contents > 5-10 (?)

Smirnov-Cramer-Von Mises

 Define statistic based on cumulative distributions S_N(x)

$$W^{2} = \int \left[S_{N}(X) - F(X) \right]^{2} f(X) dX$$

- Probability distribution for W² independent of distribution
 - E[W²] = (6N)⁻¹ and V[W²] = (4N-3)/180N³

Kolmogorov-Smirnov

Popular form of test based on S_N(x)

$$\mathsf{D}_{\mathsf{N}} = \max \big| \mathsf{S}_{\mathsf{N}}(\mathsf{X}) - \mathsf{F}(\mathsf{X}) \big|$$

- Distribution for D_{N} proportional to χ^{2}
 - Can be converted into a significance

14

Multivariate Significance

Often difficult to reduce data to one-dimensional statistic

Typical case has several variables

- Different correlations between signal and "null" hypothesis
- Any straightforward transformation causes loss of information

Several techniques used

- Characterize significance of each component and then combine into a single measure of significance
- ✤ More sophisticated, e.g.
 - Combine information using any one of the techniques discussed by Prosper, Towers, etc.

In practice, two approaches:

1. Assume independent statistics

- Check for any correlations
- 2. Model correlations using MC approaches or "bootstrapping"
 - Computationally expensive
 - Relies on understanding correlations

A Recent Example: "Superjets"

CDF Run I data contained

- Unusual lepton + v + 2,3 jet events

- 13 events with jets that are both SLT and SVX tagged
 - Expect 4.4±0.6 events from background sources
 - Significance is 0.001!
- Led to examination of 9 kinematical distributions
 - P_T & η for leptons & jets, and azimuthal angle between lepton, jet
 - $\textbf{P}_{\textbf{T}}$ and η for lepton+jet system
 - Perform independent K-S tests
 - Use control sample defined by events without a "supertag"
 - Combined significance of 1.6x10⁻⁶
 - Also defined a new statistic
 - Sum of K-S distances
 - MC gives significance of 3.3x10⁻⁶

K-S Tests on Superjet Data

– Some approximations:

- Control sample events w/o superjet
- Randomly pick 13 of 42 events
- Also checked with MC calculation of background

Comments on Superjet Study

Choice of statistic (number of superjets) problematic

- Made a posteriori after anomaly noted
 Significance difficult to assess
- Ignored lepton + 1 jet data (where one observes a deficit of events)

✤ Why?

Choice of distributions also problematic

- Justified a posteriori
- Correlations difficult to assess

Aside:

Interpretation of excess requires unusual physics process

- Not a problem in itself
- But small statistics allow for many hypotheses

Some Practical Proxies for Significance

HEP suffers Gaussian tyranny

- Many people will quote numbers of " σ " as measures of significance
 - Belief that this can be more readily interpreted by lay person
 - Shorthand for the significance of an $n\sigma$ measurement
 - ✤ 5σ seems to have become conventional "discovery threshold"
 - $\alpha = 2.8 \times 10^{-5}$
 - Used for LHC discovery reach

In situations where expected signal S and background B

Various figures of merit

✤ S/N -- signal versus noise

Doesn't scale with N

More natural definition is

See talk by Bityukov & Krasnikov for more discussion

- Just normal Gaussian estimate of # of s.d.
- Does scale with N

The "Flip-Flopping" Physicist

Feldman & Cousins highlighted the problem of "flip-flopping"

A physicist who uses

- One set of criteria to set a limit in the absence of a signal
- Different criteria to claim a significant signal
- Results in confidence intervals with ill-defined frequentist coverage

This should be anticipated in any experiment that wishes to be sensitive to small signals

 F-C propose their "unified approach"

What About Reverend Bayes?

Bayesian approach to classifying hypotheses is

$P(H_1 X)$	$P(X H_1)$	$\pi(H_1)$
$P(H_0 X)$	$\overline{P(X H_0)}$	$\overline{\pi(H_0)}$

– Few comments:

- ✤ P(X|H_i) is typically likelihood
- Only meaningful in comparison of two hypotheses
- Can handle composite hypotheses readily

 Just integrate over any "nuisance" variables

Is it used? Not often...

- Only relative "degree of belief"
 - Requires at least two hypotheses
- "Prior" avoidance
- Challenges where single points in parameter space are important

• Is $\sin 2\beta = 0$?

Some Recommendations

Define measurement strategy in advance of data analysis

- Otherwise, significance estimates could and will be biased
- "Blind" analyses can play a role
 - However, this should not limit the ability to "explore" the data

Take consistent approach to CL setting & signal measurement

- Avoid "flip-flopping" -- F-C offers one approach to this problem
- Describe clearly how you are determining "significance"

Things to remember:

- Definition of probability
- Definition of critical region
- What decisions were taken a posteriori?

Summary and Conclusions

Signal significance a wellestablished concept

- Literature full of frequentist examples
- Used to reject "null hypothesis"
- Bayesian approaches haven't entered mainstream

Potential for abuse

- Using a posteriori information makes any significance calculation suspect
- Obligation to be explicit about assumptions

HEP discovery "threshold"

– Appears to be "5 σ "

✤ Significance of 2.8x10⁻⁷

Truly a conservative bunch!