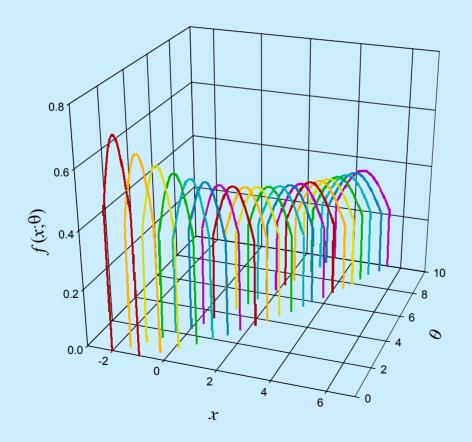
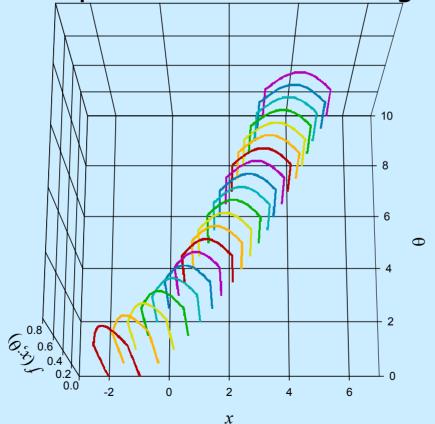
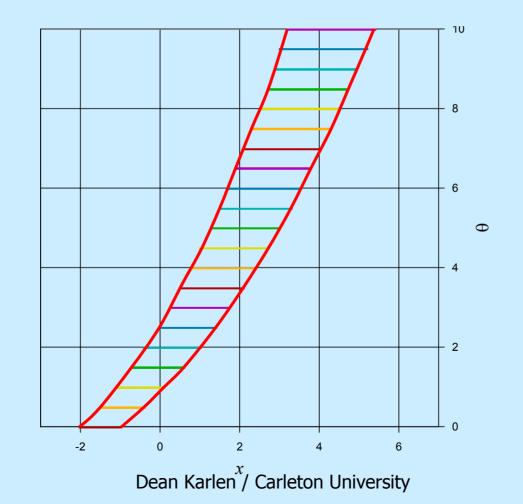
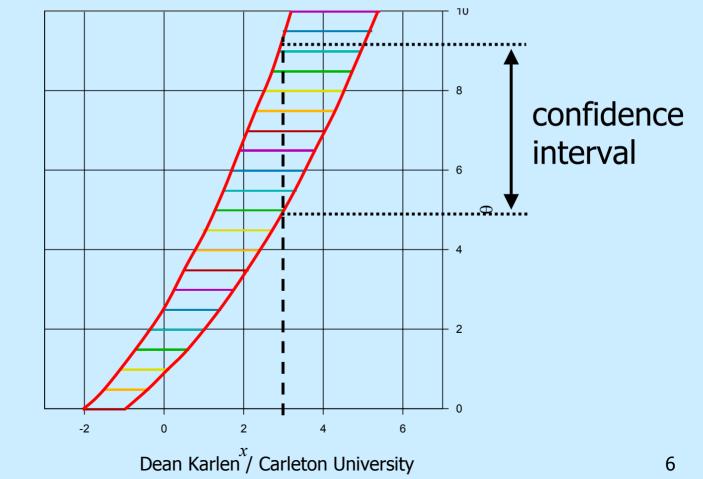

Credibility of confidence intervals


Dean Karlen / Carleton University

Advanced Statistical Techniques in Particle Physics Durham, March 2002


 Classical confidence intervals are well defined, following Neyman's construction:


- select a portion of the pdfs (with content α)
 - for example the 68% central region:


- select a portion of the pdfs (with content α)
 - for example the 68% central region:

gives the following confidence belt:

 The (frequentist) probability for the random interval to contain the true parameter is α

Problems with confidence intervals

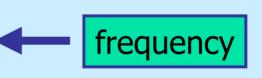
- Misinterpretation is common, by general public and scientists alike...
 - Incorrect: α states a "degree of belief" that the true value of the parameter is within the stated interval
 - Correct: α states the "relative frequency" that the random interval contains the true parameter value
 - Popular press gets it wrong more often than not
 - "The probability that the Standard Model can explain the data is less than 1%."

Problems with confidence intervals

- People are justifiably concerned and confused when confidence intervals
 - are empty; or
 - reduce in size when background estimate increases (especially when n=0); or
 - turn out to be smaller for the poorer of two experiments; or
 - exclude parameters for which an experiment is insensitive

"confidence interval pathologies"

Source of confusion


- The two definitions of probability in common use go by the same name
 - relative frequency: probability
 - degree of belief: probability
- Both definitions have merit
- Situation would be clearer if there were different names for the two concepts
 - proposal to introduce new names is way too radical
- Instead, treat this as an education problem
 - make it better known that two definitions exist

A recent published example...

Collaboration / Physics Letters B 504 (2001) 218–224

4 events selected, background estimate is 0.34 ± 0.05

Therefore, the total sample background of tau-like events generated by charm or interactions is 0.34 ± 0.05 . The Poisson probability of the background fluctuating to the signal level is 4.0×10^{-4} .

that the four events are from background sources is 4×10^{-4} , and we conclude that these events are evidence that τ neutrino charged current interactions have been observed.

The probability

And an unpublished one...

- 3 -

CERN/LEPC 2000-012

ii) What is the Higgs discovery potential if LEP operates in 2001?

Although the statistical significance would suggest a probability of only about 0.2% that the present excess is due to a background fluctuation, the committee considers the conservative likelihood of a Higgs near 115 GeV to be about "50/50" based on the present data.

Problems with confidence intervals

- Even those who understand the distinction find the "confidence interval pathologies" unsettling
 - Much effort devoted to define approaches that reduce the frequency of their occurrence
- These cases are unsettling for the same reason: *The degree of belief that these particular intervals contain the true value of the parameter is significantly less than the confidence level*
 - furthermore, there is no standard method for quantifying the pathology

Problems with confidence intervals

- The confidence interval alone is not enough to
 - define an interval with stated coverage; and
 - express a degree of belief that the parameter is contained in the interval
- F. C. recommend that experiments provide a second quantity: *sensitivity*
 - defined as the average limit for the experiment
 - consumer's degree of belief would be reduced if observed limit is far superior to average limit

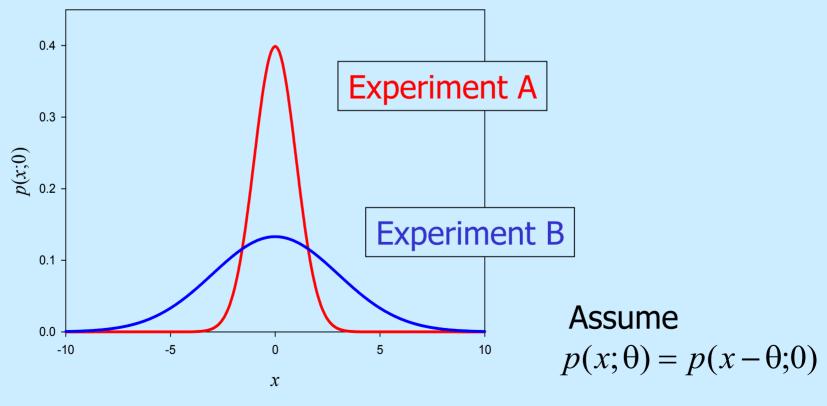
Problems with *sensitivity*

 Sensitivity is not enough – need more information to compare with observed limit
variance of limit from ensemble of experiments?

Use (Sensitivity – observed limit)/σ ?

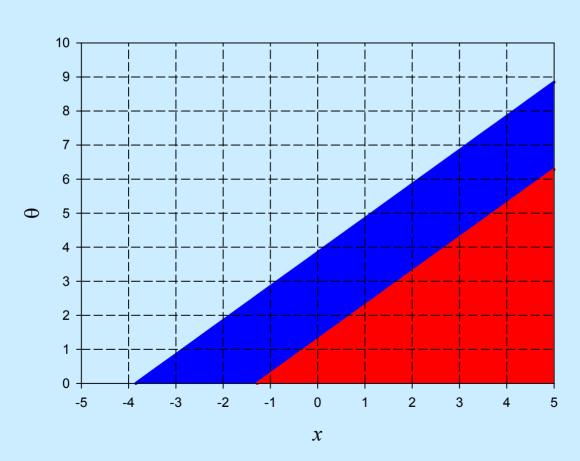
not a good indicator that interval is "pathological"

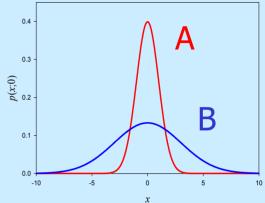
Problems with *sensitivity*

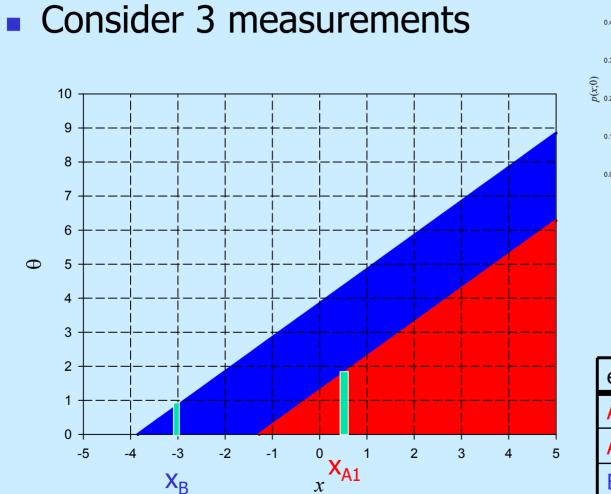

- Example: $m_{v\tau}$ analysis
 - τ → 3 prong events contribute with different weight depending on:
 - mass resolution for event
 - nearness of event to $m_{v\tau} = 0$ boundary
 - ALEPH observes one clean event very near boundary
 → Limit is much better than average
 - Any reason to reduce degree of belief that the true mass is in the stated interval? NO!

Proposal

- When quoting a confidence interval for a frontier experiment, also quote its *credibility*
 - Evaluate the degree of belief that the true parameter is contained in the stated interval
 - Use Bayes thereom with a reasonable prior
 - recommend: flat in physically allowed region
 - call this the "credibility"
 - report credibility (and prior) in journal paper
 - if credibility is much less than confidence level, consumer would be warned that the interval may be "pathological"

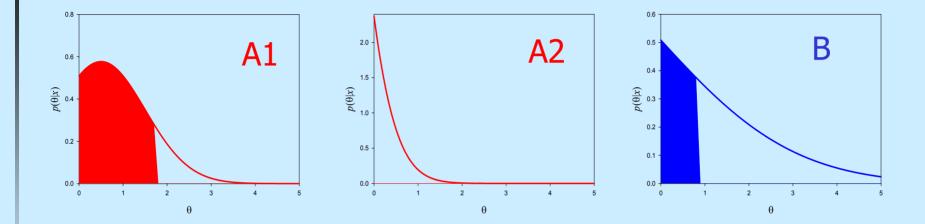

Example: Gaussian with boundary


- x is an unbiased estimator for θ
- parameter, θ , physically cannot be negative


Dean Karlen / Carleton University

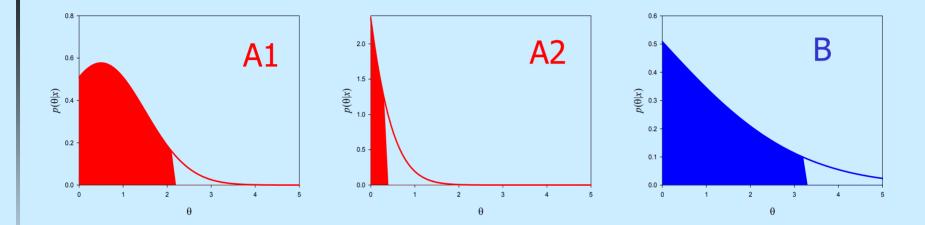
Standard confidence belts:

Dean Karlen / Carleton University


exp.	X	interval
A1	0.5	[0,1.78]
A2	-2.0	empty
В	-3.0	[0,0.85]

Calculate credibility of the intervals:

• prior: $\pi(\theta) = \frac{\text{constant if } \theta \ge 0}{0 \text{ if } \theta < 0}$


Bayes theorem: $p(\theta | x) \propto L(x | \theta) \pi(\theta)$

• Credibility:
$$\gamma = \int_{\theta_{low}}^{\theta_{up}} p(\theta \mid x) dx$$

exp.	x	interval	credibility	
A1	0.5	[0, 1.78]	0.86	
A2	-2.0	empty	0.	
В	-3.0	[0, 0.85]	0.37	

Example: 90% C.L. unified interval

exp.	x	unified interval	credibility
A1	0.5	[0, 2.14]	0.93
A2	-2.0	[0, 0.40]	0.64
В	-3.0	[0, 3.30]	0.89

Dean Karlen / Carleton University

Example: Counting experiment

• Observe *n* events, mean background v_b

• Likelihood:
$$L(n | v_s) = \frac{(v_s + v_b)^n}{n!} e^{-(v_s + v_b)}$$

• prior:
$$\pi(v_s) = \frac{\text{constant if } v_s \ge 0}{0 \text{ if } v_s < 0}$$

Example:
$v_{b} = 3$

n	90% up lim	cred	90% unified	cred
0	empty	0.00	[0, 1.08]	0.66
1	[0, 0.89]	0.50	[0, 1.88]	0.78
3	[0, 3.68]	0.85	[0, 4.42]	0.90
6	[0, 7.53]	0.90	[0.15, 8.47]	0.93
10	[0, 12.41]	0.90	[2.63, 13.50]	0.91

Dean Karlen / Carleton University

Key benefit of the proposal

- Without proposal: experiments can report an overly small (pathological) interval without informing the consumer of the potential problem.
- With proposal: Consumer can distinguish credible from incredible intervals.

Other benefits of the proposal

- Education:
 - two different probabilities calculated brings the distinction of coverage and credibility to the attention of physicists
- empty confidence intervals are assigned no credibility
- experiments with no observed events will be awarded for reducing their background (previously penalized)
- intervals "too small" (or exclusion of parameters beyond sensitivity) are assigned small credibility
- better than average limits not assigned small credibility if due to existence of rare, high precision events (m_{ντ})

Other benefits of the proposal

- Bayesian concept applied in a way that may be easy to accept even by devout frequentists:
 - choice of uniform prior appears to work well
 - does not "mix" Bayesian and frequentist methods
 - does not modify coverage
- Experimenters will naturally choose frequentist methods that are less likely to result in a poor degree of belief.
 - "Do you want to risk getting an incredible limit?"

Summary

- Confidence intervals are well defined, but
 - are frequently misinterpreted
 - can suffer from pathological problems when physical boundaries are present
- Propose that experiments quote credibility:
 - quantify possible pathology
 - reminder of two definitions of probabilities
 - encourages the use of methods for confidence interval construction that avoid pathologies