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• period of accelerated expansion 
in the very early universe

• requires negative pressure

e.g. self-interacting scalar field

• speculative and uncertain physics

Cosmological inflation:Cosmological inflation: Starobinsky (1980)

Guth (1981)

φ

V(φ)

• just the kind of peculiar cosmological 
behaviour we observe today



inflation in very early universe testable through 
primordial perturbation spectra

! radiation/matter density perturbations

! + gravitational waves (we hope)

Motivation:Motivation:

gravitational 

instability

new observational data offers precision tests of cosmological 
parameters and the Primordial Density Perturbation



PPPPrimordial DDDDensity PPPPerturbation
e.g., epoch of primordial nucleosynthesis 
cosmic fluid consists of

– photons, γ, neutrinos, ν, baryons, B, cold dark matter, CDM, 
(+quintessence?)

! total density perturbation, or
curvature perturbation R ≈≈≈≈ δρδρδρδρ/ρρρρ

! relative density perturbations, or
isocurvature pertbns  Si=δδδδ(ni/nγγγγ)/(ni/nγγγγ)

! large-angle CMB:   (∆T/T)lss ≈≈≈≈ [ R - 2Sm ] / 5



For every quantity, x, that obeys a local conservation equation

where dN = Hdt is the locally-defined expansion along comoving worldlines

Conserved cosmological perturbations
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there is a conserved perturbation

where perturbation δ x = xA - xB is a evaluated on hypersurfaces 
separated by uniform expansion ∆N=∆lna
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Lyth & Wands in preparation



examples:examples:
(i) total energy conservation:
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for perfect fluid / adiabatic perturbations, P=P(ρ)
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(ii) energy conservation for non-interacting perfect fluids:
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(iii) conserved particle/quantum numbers (e.g., B, B-L,…)
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Primordial Density Perturbation (II)
epoch of primordial nucleosynthesis
perturbed cosmic fluid consists of

– photons, ζγ, neutrinos, ζν, baryons, ζB, cold dark matter, 
ζCDM, (+quintessence, ζQ)
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• relative density perturbations, or
isocurvature perturbtns

• total density perturbation, or
curvature perturbation 



where do these perturbations come from?



perturbations in an FRW universe:

Characteristic timescales for comoving wavemode k
– oscillation period/wavelength a / k
– Hubble damping time-scale H -1

• small-scales k > aH under-damped oscillator
• large-scales k < aH over-damped oscillator (“frozen-in”)

03 2 =∇−+ δφφδφδ &&& Hwave 
equation

H-1 / a

conformal time

comoving 
wavelength, k-1

radiation or matter era

decelerated expansion

frozen-in

oscillates

comoving Hubble length

inflation

accelerated expansion    
(or contraction)

vacuum



coherent oscillations 
in photon-baryon plasma 
from primordial density 

perturbations 
on super-horizon scales

Wilkinson Microwave Anisotropy Probe  February 2003



Vacuum fluctuationsVacuum fluctuations

φ

V(φ)

• small-scale/underdamped zero-point fluctuations

• large-scale/overdamped perturbations in growing mode
linear evolution  ⇒ Gaussian random field
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fluctuations of any light fields (m<3H/2) `frozen-in’ on large scales

Hawking ’82, Starobinsky ’82, Guth & Pi ‘82

*** assumes Bunch-Davies vacuum on small scales ***

all modes start sub-Planck length for k/a > MPl      Niemeyer; Brandenberger & Martin (2000)

effect likely to be small for H << MPl Starobinsky; Niemeyer; Easther et al ; Kaloper et al (2002)



Inflaton -> matter perturbationsInflaton -> matter perturbations

σ
δσ
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HR =

for adiabatic perturbations on super-horizon scales 0=R&

during  inflation
scalar field fluctuation, δφ

scalar curvature 
on uniform-field 
hypersurfaces

time

ρ
δρ
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during matter+radiation era
density perturbation, δρ

scalar curvature 
on uniform-density

hypersurfaces

necessarily adiabatic primordial perturbations ( ) σνγ ζζζζζ ==== cdmB



high energy / not-so-slow roll

1. large field ( ∆ϕ < MPl )

e.g. chaotic inflation

not-so-high energy / very slow roll

2. small field

e.g. new or natural inflation

3. hybrid inflation

e.g., susy or sugra models

Inflaton scenario:Inflaton scenario:

slow-roll solution for potential-dominated, over-damped evolution 

gives useful approximation to growing mode for { ε , |η| } << 1
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Kinney, Melchiorri & Riotto (2001)

εη <<0

0<η

ηε <<0

see, e.g., Lyth & Riotto



can be distinguished by observationscan be distinguished by observations
• slow time-dependence during inflation 

-> weak scale-dependence of spectra

• tensor/scalar ratio suppressed at low energies/slow-roll
ηε 261 +−=n

ε162
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• Microwave background only (WMAPext)
Peiris et al (2003)

WMAP constraints (I)WMAP constraints (I)

28.1<r

spectral 
index

ηε 261 +−≈Rn
Harrison-Zel’dovich 

n →→→→ 1,   r →→→→ 0



• Microwave background + 2dF + Ly-alpha
Peiris et al (2003)

WMAP constraints (II)WMAP constraints (II)

28.1<r

spectral 
index

ηε 261 +−≈Rn



• Microwave background + 2dF + Ly-alpha
Peiris et al (2003)

WMAP constraints (III)WMAP constraints (III)

28.1<r08.013.1 ±=Rn

028.0
029.0055.0ln/ +
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scale-dependent tilt?scale-dependent tilt?

• third slow-roll parameter

– involving four derivatives of the potential, not two
– the beginning of the end for slow-roll?
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• inflaton effective mass is not constant

slow-roll inflation could be just a passing phase!
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• additional fields may play an important role
• initial state new inflation

• ending inflation hybrid inflation

• enhancing inflation assisted inflation

warm inflation

brane-world inflation

• producing density perturbations

• may yield additional information

• non-gaussianity

• isocurvature (non-adiabatic) modes

digging deeper:digging deeper:





Inflation -> primordial perturbations (II)Inflation -> primordial perturbations (II)
scalar field fluctuations density perturbations
two fields (σ,χ) matter and radiation (m,γ)
curvature of uniform-field slices curvature of uniform-density slices
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Amendola, Gordon, Wands & Sasaki (2002)

Wands, Bartolo, Matarrese & Riotto (2002)



• field dynamics during inflation
Polarski & Starobinsky; Sasaki & Stewart; Garcia-Bellido & 
Wands; Steinhardt & Mukhanov; Adams, Ross & Sarkar; 
Langlois… (1996+)

• variable couplings during/after reheating
Dvali, Gruzinov & Zaldariaga; Kofman (2003)

• late-decaying scalar : the curvaton scenario
Enqvist & Sloth; Lyth & Wands; Moroi & Takahashi (2001+)

examples:examples:



curvaton scenario:curvaton scenario:

large-scale density perturbation 
generated entirely by      
non-adiabatic modes      
after inflation

assume negligible curvature perturbation during inflation 02
* =R

Lyth & Wands, Moroi & Takahashi, Enqvist & Sloth 
(2002)
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late-decay, hence energy density non-negligible at decay
decayRST ,χΩ≈

light during inflation, hence acquires isocurvature spectrum
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•negligible gravitational waves

•100%correlated residual isocurvature modes

•detectable non-Gaussianity if Ωχ,decay<<1



primordial isocurvature perturbations from curvaton?
Moroi & Takahashi; Lyth, Ungarelli & Wands ‘03

• cdm, neutrinos, baryon asymmetry all created after curvaton decays

( ) χχνγ ζζζζζζ decay,Ω≈==== Bcdm 0=⇒ iS

• cdm/baryon asymmetry created at high energies before curvaton decay

• 100% correlation between curvature and “residual” isocurvature mode
• naturally of same magnitude

ζ3−=⇒ mS0,decay, =Ω≈= mζζζζ χχγ

• neutrino asymmetry (ξ<0.1) created at high energies before curvaton decay
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Observational constraints
Gordon & Lewis, astro-ph/0212248v2

using  CMB + 2dF + HST + BBN

95%

pre-WMAP

post-WMAP

isocurvature / curvature ratio

B = SB / ζ

c.f. Peiris et al

fiso = Scdm/ζ

≈ 0.1 B

and marginalised over
correlation angle 

-> fiso < 0.33



isocurvature perturbations from curvaton (II)
Lyth, Ungarelli & Wands ’02

Gupta, Malik & Wands in preparation

• cdm/baryon asymmetry created by curvaton decay

• curvature and isocuravture perturbations naturally of same magnitude
• relative magnitude related to non-Gaussianity
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non-Gaussianity

significant constraints on fNL from WMAP  fNL < 134

hence Ωχ,decay > 0.01   and   10 -5 < δχ/χ < 10 -3

simplest kind of non-Gaussianity:
Komatsu & Spergel (2001)

Wang & Kamiokowski (2000)
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observable parameters

• inflaton regime
– curvature & tensor perturbations
– ns & tensor/scalar ratio = nt

• curvaton regime
– curvature + isocurvature perturbations
– ns = niso & isocurvature/curvature ratio

• intermediate regime
– ns , niso , ncorr , nt , tensor/scalar, iso/curvature, correlation

Wands, Bartolo, Matarrese & Riotto, ‘02



Conclusions:Conclusions:

1. Observations of tilt  of density perturbations
(n≠1) and gravitational waves (ε>0) can 
distinguish between slow-roll models

2. Isocurvature perturbations and/or non-
Gaussianity may provide valuable info

3. Non-adiabatic perturbations in multi-field models 
are an additional source of curvature perturbations 
on large scales

4. Consistency relations remain an important test 
in multi-field models - can falsify slow-roll inflation

5. More precise data allows/requires us to study 
more detailed models!


