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NLO Light-Cone SRs ⇒
CLEO data on Fγγ∗π(Q2) ⇒

Constraints on Pion DA
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γ∗γ → π: Why Light-Cone Sum Rules?
For Q2 � m2

ρ, q2 � m2
ρ pQCD factorization valid only in

leading twist and higher twists are of importance
[Radyushkin–Ruskov, NPB (1996)].
Reason: if q2 → 0 one needs to take into account
interaction of real photon at long distances of order of
O(1/

√
q2)

��

� ��
�

��� �

�
�

��

�
�

��

� ��
�

��� �

�� � �

pQCD is OK LCSRs should be applied
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γ∗γ → π: Why Light-Cone Sum Rules?
For Q2 � m2

ρ, q2 � m2
ρ pQCD factorization valid only in

leading twist and higher twists are of importance
[Radyushkin–Ruskov, NPB (1996)].
Reason: if q2 → 0 one needs to take into account
interaction of real photon at long distances of order of
O(1/

√
q2)
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To account for long-distance effects in pQCD, one needs to

introduce light-cone DA of real photon
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γ∗γ → π: Light-Cone Sum Rules

[Khodjamirian, EJPC (1999)]: LCSR effectively accounts
for long-distances effects of real photon using quark-hadron
duality in vector channel and dispersion relation in q2
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γ∗γ → π: Light-Cone Sum Rules

[Khodjamirian, EJPC (1999)]: LCSR effectively accounts
for long-distances effects of real photon using quark-hadron
duality in vector channel and dispersion relation in q2

Fγγ∗π(Q2, q2 → 0) =
1

π

∫∫∫ s0

0

ImF PT
γ∗γ∗π(Q2, s)

m2
ρ

e(m2
ρ−s)/M 2

ds

+
1

π

∫∫∫ ∞

s0

ImF PT
γ∗γ∗π(Q2, s)

s
ds

s0 � 1.5 GeV2 – effective threshold in vector channel,
M2 – Borel parameter (0.5 − 0.9 GeV2).
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γ∗γ → π: Light-Cone Sum Rules

[Khodjamirian, EJPC (1999)]: LCSR effectively accounts
for long-distances effects of real photon using quark-hadron
duality in vector channel and dispersion relation in q2

Fγγ∗π(Q2, q2 → 0) =
1

π

∫∫∫ s0

0

ImF PT
γ∗γ∗π(Q2, s)

m2
ρ

e(m2
ρ−s)/M 2

ds

+
1

π

∫∫∫ ∞

s0

ImF PT
γ∗γ∗π(Q2, s)

s
ds

s0 � 1.5 GeV2 – effective threshold in vector channel,
M2 – Borel parameter (0.5 − 0.9 GeV2).

Real-photon limit q2 → 0 can be easily done!
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CLEO-data analysis

Accurate NLO evolution for both ϕ(x,Q2
exp) and

αs(Q
2
exp), taking into account quark thresholds;
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CLEO-data analysis

Accurate NLO evolution for both ϕ(x,Q2
exp) and

αs(Q
2
exp), taking into account quark thresholds;

The relation between “nonlocality" scale and twist-4

magnitude δ2
Tw-4 ≈ λ2

q/2 was used to re-estimate

δ2
Tw-4 = 0.19 ± 0.02 at λ2

q = 0.4 GeV2
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New procedure of data processing to disentangle the
statistical and theoretical uncertainties
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CLEO-data analysis

Accurate NLO evolution for both ϕ(x,Q2
exp) and

αs(Q
2
exp), taking into account quark thresholds;

The relation between “nonlocality" scale and twist-4

magnitude δ2
Tw-4 ≈ λ2

q/2 was used to re-estimate

δ2
Tw-4 = 0.19 ± 0.02 at λ2

q = 0.4 GeV2

New procedure of data processing to disentangle the
statistical and theoretical uncertainties

Constraints on 〈x−1〉π from CLEO data.
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NLC SR Constraints on a2, a4 of Pion DA
.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-0.3

-0.2

-0.1

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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λ2

q = 0.4 GeV2

↑
λ2

q = 0.5 GeV2

↙λ2
q = 0.6 GeV2a4

a2

μ2 = 1.35 GeV2

λ2
q – average virtual-

ity of vacuum quarks
– the single parame-
ter of NLC approach
[PLB 508(2001)279]

Main purpose of analysis: to use CLEO data to restrict λ2
q

☞
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NLC SR Results vs NLO CLEO Constraints

[BMS, PRD 67 (2003) 074012]
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(a)

⇔ λ2
q = 0.6 GeV2,

δ2
Tw-4 = 0.28(3) GeV2

No agreement with CLEO data for λ2
q = 0.6 GeV2
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NLC SR Results vs NLO CLEO Constraints

[BMS, PRD 67 (2003) 074012]
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⇔ λ2
q = 0.5 GeV2,

δ2
Tw-4 = 0.23(2) GeV2

Bad agreement with CLEO data for λ2
q = 0.5 GeV2
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NLC SR Results vs NLO CLEO Constraints

[BMS, PRD 67 (2003) 074012]
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(c)

⇔ λ2
q = 0.4 GeV2,

δ2
Tw-4 = 0.19(2) GeV2

Good agreement with CLEO data for λ2
q = 0.4 GeV2 ☞

Constraints on Pion DA from experiments – p. 8



NLC SR Results vs NLO CLEO Constraints

[BMS, PRD 67 (2003) 074012]
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(c)

⇔ λ2
q = 0.4 GeV2,

δ2
Tw-4 = 0.19(2) GeV2

Good agreement with CLEO data for λ2
q = 0.4 GeV2 ☞

For λ2
q � 0.35 GeV2 agreement may be better, but:

QCD SRs become unstable

disagreement with lattice estimates
[Bakulev&Mikhailov, PRD 65 (2002) 114511]
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NLC SRs vs CLEO Constraints

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)
with 20% uncertainty of δ2

Tw-4: δ2
Tw-4 = 0.19(4) GeV2

BMS [PLB 578 (2004) 91]: λ2
q = 0.4 GeV2
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✚= best-fit BMS point

Constraints on Pion DA from experiments – p. 9



NLC SRs vs CLEO Constraints

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)
with 20% uncertainty of δ2

Tw-4: δ2
Tw-4 = 0.19(4) GeV2

BMS [PLB 578 (2004) 91]: λ2
q = 0.4 GeV2

3σ
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0

0.1

a2

a4

✚= best-fit BMS, ●=SY points
◆= Asymptotic DA
■= CZ DA, ▼= BF DA

Even with 20% uncertainty in twist-4
CZ, BF DA excluded at least at 4σ-level!

As DA — at 3σ-level.
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NLC SRs vs CLEO Constraints

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)
with 20% uncertainty of δ2

Tw-4: δ2
Tw-4 = 0.19(4) GeV2

BMS [PLB 578 (2004) 91]: λ2
q = 0.4 GeV2

3σ
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0

0.1

a2

a4

✚= best-fit BMS, ●=SY points
◆ = Asymptotic DA
■ = CZ DA, ▼= BF DA
✖ = BMS model

CZ DA excluded at least at 4σ-level! As DA — at 3σ-level.
BMS DA and most of BMS bunch — inside 1σ-domain.
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NLC SRs vs CLEO Constraints

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)
with 20% uncertainty of δ2

Tw-4: δ2
Tw-4 = 0.19(4) GeV2

BMS [PLB 578 (2004) 91]: λ2
q = 0.4 GeV2

3σ
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0.1

a2

a4
✚= best-fit BMS, ●=SY points
◆ = Asymptotic DA
■ = CZ DA, ▼= BF DA
✖ = BMS model
✩, ▲ and ✦ = instantons

BMS DA and most of BMS bunch — inside 1σ-domain.
Instanton-based models — near 3σ-boundary
(Praszalowicz et al -model is close to 2σ-boundary).
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NLC SRs vs CLEO Constraints

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)
with 20% uncertainty of δ2

Tw-4: δ2
Tw-4 = 0.19(4) GeV2

BMS [PLB 578 (2004) 91]: λ2
q = 0.4 GeV2

3σ
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a2

a4
✚= best-fit BMS, ●=SY points
◆ = Asymptotic DA
■ = CZ DA, ▼= BF DA
✖ = BMS model
✩, ▲ and ✦ = instantons
▼ = transverse lattice

BMS DA and most of BMS bunch–inside 1σ-domain. ☞
Transverse lattice model — near 3σ-boundary.
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NLC SRs vs CLEO Constraints

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)
with 20% uncertainty of δ2

Tw-4: δ2
Tw-4 = 0.19(4) GeV2

BMS [PLB 578 (2004) 91]: λ2
q = 0.4 GeV2

3σ

0 0.1 0.2 0.3 0.4
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1 ✚= best-fit BMS, ●=SY points
◆ = Asymptotic DA
■ = CZ DA, ▼= BF DA
✖ = BMS model
✩, ▲ and ✦ = instantons
▼ = transverse lattice
▲=BZ model

▲ in diamond = [Ball and Zwicky (2005)] constraint
at 2σ-boundary.
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New CLEO data constraints for 〈x−1〉π

BMS [PLB 578 (2004) 91]: evolution to μ2 = 1 GeV2
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π /3 − 1 λ2

q = 0.4 GeV2,
1
3
〈x−1〉SR

π − 1 = 0.1 ± 0.1 ☞

See also Bijnens&Khodjamirian
[EPJC (2002)]:
1
3
〈x−1〉π − 1 = 0.24 ± 0.16

Again:
Good agreement of a theoretical “tool” of different
origin with CLEO data
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New CLEO data constraints for 〈x−1〉π

BMS [Ann. Phys.(Leipzig)13(2004) 629]:
evolution to μ2 = 1 GeV2
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Again:
Good agreement of a theoretical “tool” of different
origin with CLEO data
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LCSR vs. CELLO (♦) & CLEO (▲) data
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curve DA
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Asymp.

BMS bunch describes rather well all data above
Q2���1.5 GeV2;

Low-Q2 CELLO data (only statistical errors shown)
excludes As DA and high-Q2 CLEO data excludes CZ
DA.
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Diffractive Dijet Production

What can
E791 data add?
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E791: Diffractive dijet production

Frankfurt et al. [PLB (1993)]: Rough estimations
Braun et al. [NPB (2002)]: Account for hard GEXs
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q2
⊥ � 4 GeV2

s � 1000 GeV2
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E791: Good agreement with BMS bunch

Following convolution procedure of Braun et al., we found
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[PLB 578 (2004) 91]

DA χ2

Asymp. 12.56
BMS bunch 10.96

CZ 14.15
(accounting for 18 data points)

Our bunch of pion DAs has maximum uncertainty in the
central region, but agrees well with E791 data!
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JLab data for Fπ(Q2)

in
Analytic NLO pQCD

Constraints on Pion DA from experiments – p. 16



Analytic Perturbation Theory

Analyticization means procedure to obtain analyticity of
hadronic observables in whole Q2 region via dispersion
relations (Radyushkin, Krasnikov&Pivovarov,
Dokshitzer, Beneke&Braun, Shirkov&Solovtsov):
Analytization combines

RG invariance =⇒ resummation of UV logs and
correct QCD asymptotics
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Analytic Perturbation Theory

Analyticization means procedure to obtain analyticity of
hadronic observables in whole Q2 region via dispersion
relations (Radyushkin, Krasnikov&Pivovarov,
Dokshitzer, Beneke&Braun, Shirkov&Solovtsov):
Analytization combines

RG invariance =⇒ resummation of UV logs and
correct QCD asymptotics

Causality =⇒ spectral representation
=⇒ no Landau singularity
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Analytic Perturbation Theory

Analytic Perturbation Theory expresses QCD

observables over non-power sequences {A(L)
k (Q2)} in

L-loop order [Shirkov, NPB Proc. 64 (1998) 106].
At 1-loop:

A(1)
k (Q2) =

1

π

∞∫∫∫
0

ρ
(1)
k (σ) dσ

σ + Q2 − iε
; ρ

(1)
k (σ) = Im

(
4π

b0 ln(−σ/Λ2)

)k
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Analytic Perturbation Theory

Analytic Perturbation Theory expresses QCD

observables over non-power sequences {A(L)
k (Q2)} in

L-loop order [Shirkov, NPB Proc. 64 (1998) 106].
At 1-loop:

A(1)
k (Q2) =

1

π

∞∫∫∫
0

ρ
(1)
k (σ) dσ

σ + Q2 − iε
; ρ

(1)
k (σ) = Im

(
4π

b0 ln(−σ/Λ2)

)k

with 1-loop explicit expressions

A(1)
1 (Q2) =

4π

b0

[
1

ln(Q2/Λ2)
+

Λ2

Λ2 − Q2

]
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Analytic Perturbation Theory

Analytic Perturbation Theory expresses QCD

observables over non-power sequences {A(L)
k (Q2)} in

L-loop order [Shirkov, NPB Proc. 64 (1998) 106].
At 1-loop:

A(1)
k (Q2) =

1

π

∞∫∫∫
0

ρ
(1)
k (σ) dσ

σ + Q2 − iε
; ρ

(1)
k (σ) = Im

(
4π

b0 ln(−σ/Λ2)

)k

with 1-loop explicit expressions

A(1)
1 (Q2) =

4π

b0

[
1

ln(Q2/Λ2)
+

Λ2

Λ2 − Q2

]

A(1)
2 (Q2) =

(
4π

b0

)2 [
1

ln2(Q2/Λ2)
+

Q2Λ2

(Λ2 − Q2)2

]
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Analytic Perturbation Theory

Analytic Perturbation Theory expresses QCD

observables over non-power sequences {A(L)
k (Q2)} in

L-loop order [Shirkov, NPB Proc. 64 (1998) 106].
At 1-loop:

A(1)
k (Q2) =

1

π

∞∫∫∫
0

ρ
(1)
k (σ) dσ

σ + Q2 − iε
; ρ

(1)
k (σ) = Im

(
4π

b0 ln(−σ/Λ2)

)k

Important: A2(Q
2) �= [A1(Q

2)
]2
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Pion form factor in analytic NLO pQCD

[Bakulev-Passek-Schroers-Stefanis,
PRD 70 (2004) 033014]
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BLM scale
αV -scheme

� De facto insensitive to scheme/scale setting
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Pion form factor in analytic NLO pQCD

[Bakulev-Passek-Schroers-Stefanis,
PRD 70 (2004) 033014]
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� De facto insensitive to scheme/scale setting
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Pion FF in analytic NLO pQCD
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Green strip includes

NLC QCD SRs uncertainties (pion DA bunch);

scale-setting ambiguities at NLO level.
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New Lattice Data
for

pion DA
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CLEO Constraints and Lattice Data

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)

with 20% uncertainty of δ2
Tw-4: δ2

Tw-4 = 0.19 ± 0.04 GeV2

BMS [PLB 578 (2004) 91]: λ2
q = 0.4 GeV2

3σ
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✚ = best-fit point
◆ = Asymptotic DA
■ = CZ DA
✖ = BMS model
✩, ▲ and ✦ = instantons
▼ = transverse lattice

BMS DA and most of BMS bunch — inside 1σ-domain.
Transverse lattice model — near 3σ-boundary.
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CLEO Constraints and Lattice Data

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)

with 20% uncertainty of δ2
Tw-4: δ2

Tw-4 = 0.19 ± 0.04 GeV2

BMS [PLB 578 (2004) 91]: λ2
q = 0.4 GeV2

3σ
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◆ = Asymptotic DA
■ = CZ DA
▼ = BF DA
✚ = best-fit point, ●=SY point
✖ = BMS model
✩, ▲ = instantons
▼ = transverse lattice
gray strip = L.Del Debbio’04

BMS DA and most of BMS bunch — inside 1σ-domain
and inside 2004 lattice strip [PRD 73 (2006) 056002].
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CLEO Constraints and Lattice Data

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)

with 20% uncertainty of δ2
Tw-4: δ2

Tw-4 = 0.19 ± 0.04 GeV2

BMS [PLB 578 (2004) 91]: λ2
q = 0.4 GeV2

3σ
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◆ = Asymptotic DA
■ = CZ DA, ▼ = BF DA
✚ = best-fit point, ●=SY point
✖ = BMS model
✩, ▲ = instantons
▼ = transverse lattice
gray strip =QCD SF/UK’06

BMS DA and most of BMS bunch — inside 1σ-domain
and inside new 2006 lattice strip [hep-lat/0606012]. ☞

Constraints on Pion DA from experiments – p. 21



CLEO Constraints and Lattice Data

NLO Light-Cone SR ⊕ Twist-4 ⊕(μ2 = Q2)

with 10% uncertainty of δ2
Tw-4: δ2

Tw-4 = 0.19 ± 0.02 GeV2

[PRD 73 (2006) 056002]: λ2
q = 0.4 GeV2
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◆ = Asymptotic DA
■ = CZ DA, ▼ = BF DA
✚ = best-fit point, ●=SY point
✖ = BMS model
✩, ▲ = instantons
▼ = transverse lattice
gray strip =QCD SF/UK’06

BMS DA and most of BMS bunch — inside 1σ-domain
and inside lattice strip. Dashed contour = renormalon
model estimation of Twist-4 in CLEO data analysis.
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CONCLUSIONS

QCD SR with NLC for pion DA gives us admissible
sets(bunches) of DAs for each λ2

q value.☛
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Comparing NLC SRs with new CLEO constraints
allows to fix the value of QCD vacuum nonlocality
λ2

q = 0.4 GeV2. ☛
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CONCLUSIONS

QCD SR with NLC for pion DA gives us admissible
sets of DAs for each λ2

q value.

Comparing NLC SRs with new CLEO constraints
allows to fix the value of QCD vacuum nonlocality
λ2

q = 0.4 GeV2.

NLO LCSR produces new constraints on pion DA
parameters (a2, a4) in conjunction with CLEO data.

This bunch of pion DAs agrees well with E791 data on
diffractive dijet production, with JLab F(pi) data on pion
EM form factor and with recent lattice data. ☛
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