Meson wave functions from the lattice

Wolfram Schroers

QCDSF/UKQCD Collaboration

V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow,G. Schierholz, A. Schiller, W. Schroers, H. Stüben, J.M. Zanotti

Outline

- Basics of lattice calculations
- Renormalization
- Chiral perturbation theory
- QCDSF results (hep-ph/0606012)
- Summary & Outlook

Lattice QCD

- Goal: Qualitative & quantitative insight into hadronic functions from first principles
 - Comparison experiment ↔ theory

⇒ Credibility for predictions

• Advantage: Vary parameters, e.g., m_q, N_C, N_F

Quark masses

• Heavy quark regime:

confinement, flux tubes, adiabatic potential

• Light quark regime:

chiral symmetry breaking, instantons, chiral perturbation theory

Getting observables

• In principle, three extrapolations

- Infinite-volume extrapolation
- Continuum extrapolation
- Chiral extra- (or inter-) polation

Practically Acts important

- Unimproved Wilson fermions
- Improved Wilson
- Improved staggered fermions
- Ginsparg-Wilson fermions
 - Domain-wall
 - Overlap

- Unimproved Wilson fermions
- Improved Wilson
- Improved staggered fermions
- Ginsparg-Wilson fermions
 - Domain-wall
 - Overlap

- Unimproved Wilson fermions
- Improved Wilson
- Improved staggered fermions
- Ginsparg-Wilson fermions
 - Domain-wall
 - Overlap

Chiral O(G2) built expensive

- Unimproved Wilson fermions
- Improved Wilson
- Improved staggered fermions
- Ginsparg-Wilson fermions
 - Domain-wall
 - Overlap

The challenge

- Light valence fermions are possible today
- Light sea quarks remain major issue

Possible solutions:

- Hybrid calculations
- Full GW: Either full DWF or Overlap
- Full Wilson-type fermions

Renormalization

- Matching between lattice regularization at scale a⁻¹ and continuum MS-bar scheme
 - Perturbative
 - Non-perturbative: RI-MOM scheme
 - Non-perturbative: Schrödinger functional

Perturbative

- Analytical calculation possible
- No lattice-systematic errors, no statistical uncertainties
- Lattice pert.-theory restricted to leading order
- Uncontrolled error from higher orders
- Only feasible if Z is O(I)

NP-renorm: RI-MOM

- Possible for any lattice action
- Requires gauge-fixing ⇒ Lattice Gribov copies
- May fail to yield result, but can be diagnozed
- Applicable to arbitrary Z-factors
- Does not require resampling of gauge fields
 But needs chiral extrapolation

NP-renorm: SF

- Applicable to any lattice action
- No gauge fixing and no chiral extrapolation required (exactly chiral)
- Requires resampling of gauge fields at several volumes (operator-dependend)
- Matching to MS-bar must be done on your own
- Very complicated to be used

Chiral extrapolations

- Unresolved problem: <x>_{u-d}
- Success story: g_A

Open issue: <*x*>*u*-*d*

Phys.Rev. D71:114511 (2005) (M. Göckeler et al)

Nucl.Phys.Proc.Suppl. 140:399-404 (2005) (J. Zanotti et al)

PoS LAT2005:363 (2005) (T. Streuer et al)

FIG. 9: The ratio of the flavor non-singlet momentum fraction to the helicity distribution (octagons). The experimental expectation is marked by the burst symbol.

hep-lat/0505024 (K. Orginos et al)

Momentum Fraction: $\langle x \rangle_{u-d}$

D.B. Renner, talk at Lattice 2006

LHPC: Hybrid calculations

- Hybrid approach: Asqtad & DWF
- Achievement: 5% acc. at m_{π} =354 MeV
- Lattice sizes (2.5fm)³ and (3.5fm)³
- Six constants: f_{π} , m_{Δ} - m_N , $g_{N\Delta}$, g_A , $g_{\Delta\Delta}$, C
- First three: physical values, others are fit
- Total error from constr. parameters: <1%

Combined results full QCD

Phys.Rev.Lett. 96:052001 (2006)

Combined results full QCD

Phys.Rev.Lett. 96:052001 (2006)

Results for g_A

Leading twist meson DAs

Scale dependence

 $\phi(x,\mu^2) \sim \int_{k_{\perp}^2 < \mu^2} d^2 k_{\perp} \phi(x,k_{\perp})$

- Process-independent, carries info on meson
- Scale dependence: ERBL-evolution

Bethe-Salpeter equation

⇒ Eigenfunctions are Gegenbauer polynomials $C_n^{3/2}(2x-1)$

$$\phi(x,\mu^2) = 6x(1-x)\sum_{n=0}^{\infty} a_n(\mu^2)C_n^{3/2}(2x-1)$$

• For π , ρ , η , η ' and Φ :

G parity $\Rightarrow a_{odd} = 0$

=> mirror symmetry

• K, K*:
$$a_{odd} \neq C$$

• K, K*: $a_{odd} \neq O$

Lattice calculations

 $\langle \Omega | \mathcal{O}_{\{\mu_0 \dots \mu_n\}} | \Pi(\vec{p}) \rangle = \mathrm{i} f_{\Pi} p_{\mu_0} \dots p_{\mu_n} \langle \xi^n \rangle$

x = 1 $\hat{z}(1 + \xi)$

- Local operator via light-cone OPE
- Yields moments of DAs w.r.t. x
- Matrix elements from ratios of two-point functions

Choice of operators

$$\mathcal{O}_{41}^a = \mathcal{O}_{\{41\}}, \qquad \vec{p} = (2\pi/L, 0, 0)$$

$$\mathcal{O}_{44}^b = (\mathcal{O}_{44} - 1/3(\mathcal{O}_{ii})), \qquad \vec{p} = \vec{0}$$

 $\begin{aligned} \mathcal{O}_{412}^a &= \mathcal{O}_{\{412\}}, & \vec{p} = (2\pi/L, 2\pi/L, 0) \\ \mathcal{O}_{411}^b &= (\mathcal{O}_{411} - & \\ 1/2(\mathcal{O}_{422} + \mathcal{O}_{433})), & \vec{p} = (2\pi/L, 0, 0) \end{aligned}$

Renormalization

β	$\mu^2 = 1/a^2 \; [\text{GeV}^2]$	Z_{mix}^{MS}
5.20	5.3361	-0.00258
5.25	6.2001	-0.00253
5.29	6.9696	-0.00250
5.40	9.7344	-0.00240

Changing schemes

β	$\mu^2 = (1/a)^2 [{ m GeV^2}]$	$Z_{2a}^{\overline{MS}}/Z_{2a}^{RGI}$
5.20	5.3361	0.5650
5.25	6.2001	0.5545
5.29	6.9696	0.5465
5.40	9.7344	0.5262

Working points

eta	$\kappa_{ m sea}$	Volume	r_0/a	am_{π}
5.20	0.13420	$16^3 \times 32$	4.077(70)	0.5847(12)
5.20	0.13500	$16^3 \times 32$	4.754(45)	0.4148(13)
5.20	0.13550	$16^3 \times 32$	5.041(53)	0.2907(15)
5.25	0.13460	$16^3 \times 32$	4.737(50)	0.4932(10)
5.25	0.13520	$16^3 \times 32$	5.138(55)	0.3821(13)
5.25	0.13575	$24^3 \times 48$	5.532(40)	0.25556(55)
5.29	0.13400	$16^3 \times 32$	4.813(82)	0.5767(11)
5.29	0.13500	$16^3 \times 32$	5.227(75)	0.42057(92)
5.29	0.13550	$24^3 \times 48$	5.566(64)	0.32696(64)
5.29	0.13590	$24^3 \times 48$	5.840(70)	0.23956(71)
5.40	0.13500	$24^3 \times 48$	6.092(67)	0.40301(43)
5.40	0.13560	$24^3 \times 48$	6.381(53)	0.31232(67)
5.40	0.13610	$24^3 \times 48$	6.714(64)	0.22081(72)

Dynamical Clover, n_f=2

XPT: Chen et.al., PRL92:202001(2004)

Our result: $\langle \xi^2 \rangle_{\pi} (\mu^2 = 4 \,\text{GeV}^2) = 0.269(39)$ $a_2^{\pi} (4 \,\text{GeV}^2) = 0.201(114)$

Compare to Del Debbio et.al., NPPS119:416(2003): $\langle \xi^2 \rangle_{\pi} (\mu^2 = 4 \,\text{GeV}^2) = 0.286(49)^{+0.030}_{-0.013}$

> Larger than asymptotic value: $\langle \xi^2 \rangle_{\pi} (\mu^2 \to \infty) = 0.2$

$F_{\pi 0} \rightarrow \gamma^* \gamma$ at leading twist

$F_{\pi o \rightarrow \gamma^* \gamma}$ various models

$F_{\pi o \rightarrow \gamma^* \gamma}$ various models

$F_{\pi o \rightarrow \gamma^* \gamma}$ various models

Mass non-deg. quarks

Averaging over 4 values of κ_{sea} : $\langle \xi^2 \rangle_K (\mu^2 = 4 \,\text{GeV}^2) = 0.260(6)$ $\langle \xi^2 \rangle_K / \langle \xi^2 \rangle_\pi \simeq 1$

Chernyak&Zhitnisky:

Ball et.al. Khodjamirian et.al.:

 $0.59(4) \quad \longleftarrow \quad \simeq 1$

Averaging over 4 values of κ_{sea} : $\langle \xi \rangle_K (\mu^2 = 4 \,\text{GeV}^2) = 0.0272(5)$ $a_1^K (4 \,\text{GeV}^2) = 0.0453(9)(29)$

Recent controversy in literature, see Ball et.al., hep-lat/0603063: $a_1^K (4 \,\text{GeV}^2) = 0.05(25)$

Compatible with hep-lat/0607018 (Next talk of A. Jüttner) $a_1^K (4 \,\text{GeV}^2) = 0.055(5)$

Summary

- $a_2^{\pi}(4 \,\text{GeV}^2) = 0.201(114)$: larger than asymptotic values, can distinguish models
- $a_2^K (4 \,\mathrm{GeV}^2) = 0.175(18)(47)$: about the same as a_2^{π} , also distinguishes models
- $a_1^K (4 \,\mathrm{GeV}^2) = 0.0453(9)(29)$: compatible with sum-rule estimate

Outlook

- Lower pion masses (300 MeV and below)
- Improved chiral perturbation theory (J.W. Chen, private communication)
- Higher twist contributions
- Other mesons
- Nucleon N. Warkentin @ Regensburg U.