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Why is evolution important?Why is evolution important?
• scaling violation is a pQCD prediction and might be confronted with 

experimental data, e.g., from collider experiments

H1 and ZEUS DVCS measurement

canonical  scaling: 

measured scaling:

scaling violation arises from evolution

• non-perturbative input might be evaluated at a low scale 

(lattice, sum-rules, models)

• evolution is part of a complete pQCD analysis

(quantitatively not working to LO)
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RestrictedRestricted conformalconformal symmetrysymmetry in in pQCDpQCD

Massless QCD Lagragian is invariant under conformal transformations SO(4,2) 

• Poincaré transformations

• dilatation:

• special conformal transformations: 

Restricted to the light-cone (                                                          ):

xµ → x′µ = λxµ

xµ → x′µ = xµ+aµ

1+2a·x+a2x2

collinear conformal group SL(2,R) ~ SO(2,1) (projection on a line):

xµ = x−n
µ + x+n

µ + xµ⊥ , n2 = n2 = 0

is characterized by the conformal spin

generators: 

[L0,L∓] = ∓L∓ , [L−,L+] = −2L0

Φ(αn)→ Φ′(αn) = (cα + d)−2jΦ
(
aα+b
cα+dn

)
, ad − bc = 1

L+ = −iP+, L− = (i/2)K−, L0 = (i/2)(D+M−+)

j = (ℓ+ s)/2, ℓ-dimension, s-spin projection

x− → x− + c, x− = λx−, x− → x′− = x−
1+2a x−



Note:
• conformal symmetry is broken by the renormalization procedure (trace anomaly)

• and in the non-perturbative sector, since of the observed mass spectrum P2=M2≠0

• Restricted conformal symmetry remains a powerful tool, 

e.g., partial wave decomposition of DAs:

exp {iλD}P2 exp {−iλD} = exp {2λ}P2 P
2 !
= 0

O
j1,j2
n,l = il−n(∂+1 + ∂+2)

l−nOj1,j2n,n , l ≥ n

Oj1,j2n = ∂n+

[
Φj1P

(2j1−1,2j2−1)
n

(
→

∂ +−
←

∂ +
→

∂ ++
←

∂ +

)
Φj2

]

jn = j1 + j2 + n - conformal spin

ϕ(x) =
∑∞
n=0 ωn(x)P

(2j1−1,2j2−1)
n (2x− 1)〈0|Oj1,j2n,n |M〉

gµνΘQCD
µν

EOM
= d−4

4
(Ga

µν)
2+ . . . = −ǫg+β(g)

2g
[(Ga

µν)
2]+ . . .



True conformal Ward identities are derived in the standard way within MS scheme [DM 94]:

I. reparameterization invariance of the path integral in the regularized theory

II. renormalization procedure

a(n, l) = (n− l)(n+ l + 2j − 1)

anomalous dimensions                                        modify the canonical ones  

dilatation Ward identity (renormalization group equation):

special conformal Ward identity:

with                                                            and special conformal anomaly

conformal covariance is broken to LO in the MS scheme (finite part)

ℓcannγnm = αs
2πγ

(0)
n δnm + · · ·

L
(y,z)
− 〈[Qnl]ψ(y)ψ(z)〉 = i

∑n
m=0 [a(n, l)δnm+γcnm(l)]〈[Qml−1]ψ(y)ψ(z)〉

γcnm(l) =
αs
2πγ

c(0)
nm (l) + · · · , γ

c(0)
nm (l) = −bnm(l)γ

(0)
m + wnm

L
(y,z)
0 〈[Qnl]ψ(y)ψ(z)〉 = −

∑n
m=0 [ℓ

can
n δnm + γnm] 〈[Qml]ψ(y)ψ(z)〉

+β
g
〈[Qml∆

g ]ψ(y)ψ(z)〉+ · · ·

+β
g 〈[Qml∆

g
−]ψ(y)ψ(z)〉+ · · ·



Conformal constraints & anomalous dimensions to NLOConformal constraints & anomalous dimensions to NLO

2(n−m)(n+m+ 3)γnm(αs) =
[
γ̂(αs), γ̂

c(αs) + 2βg (αs)b̂(l)
]

nm
, n>m

hence, we have to LO and to NLO

� this result coincides with the explicit evaluation of the flavor non-singlet kernel

� the anomalous dimensions are known in an analytic form

� it explains the unexpected conformal symmetry breaking: 

due to the minimal subtraction scheme 

or by the finite part of the LO operator, which breaks special conformal symmetry

� for β=0 conformal covariance can be restored to all orders in perturbation theory

(changed scaling dimensions) [DM 97]

� dilatation operator can be even diagonalized within β≠0

The conformal algebra induces a constraint between anomalies [DM 94]:

the off-diagonal entries are related by a recurrence relation  

γ
(1)
nm =

γ(0)n −γ(0)m

2(n−m)(n+m+3)

(
−bnmγ

(0)
m + wnm − β0bnm

)
, n > mγ

(0)
nm = 0

[L0,L−] = −L− ⇒
[
â(l) + γ̂c(l) + 2β(g)

g
b̂(l), γ̂

]
= 0



Compendium of NLO resultsCompendium of NLO results
At leading twist-two we have 7 different operators:

ψ̄γ+λ
NSψ

{
ψ̄γ+ψ

G+µg
µνGν+

} {
ψ̄γ+γ5ψ

G+µǫ
+−µνGν+

}

the three anomalous dimension matrices in the singlet sector were evaluated up to NLO
[A.V. Belitsky, DM (98)]

γ̂ =
(
QQγ̂ QGγ̂
GQγ̂ GGγ̂

)
, dnm = 1

a(n,m)

(
b̂ 0
0 b̂

)

nm
, gnm = 1

a(n,m)

(
QQŵ QGŵ
GQŵ GGŵ

)

nm

where the diagonal part         coincides with DIS anomalous dimensions

� from the analytic expressions we were able to construct all ten evolution kernels
[A.V. Belitsky, A. Freund, DM (99/00)]

� consistency checks based on supersymmetry

� explicit evaluation of the β-proportional terms were performed

� twist-3 NLO kernels are evaluated for           DA and SUSY scalar operator 

[A.V. Belitsky, G. Korchemsky, DM (05/06)] 

∆↑↑↑

γ
(1)
n

γ
(1)
nm = γ

(1)
n δnm+γ

ND(1)
nm |n>m, γ̂ND(1) = −

[
γ̂(0), d̂

] (
β01̂+ γ̂

(0)
)
+
[
γ̂(0), ĝ

]

{
ψ̄σ+⊥ψ

G+µτ
αβ;µνGν+

}



Solution of the evolution equationSolution of the evolution equation

The solution beyond LO leads in the MS scheme to a mixing of conformal partial waves

Enm(Q,Q0) =

[

P exp

{

−

∫ Q

Q0

dµ

µ
γ̂(αs(µ))

}]

nm

Q
d

dQ
Enm(Q,Q0) = −

n∑

l=m

γnl(αs(Q))Elm(Q,Q0), Enm(Q0, Q0) = δnm

The solution, given by a path ordered exponential, can be easily evaluated

NOTE: that even for an asymptotic input distribution all harmonics are contributing

ϕasy(0) = 6x(1−x) ⇒ ϕasy(1) = 6x(1−x)

(
1 +

α∗s
2π

4

3

[
ln2

x

1− x
+ 2−

π2

3

])

Q → ∞, α∗s−con.

Q2 d

dQ2
ϕ(x,Q2) =

∫ 1

0

dyV (x, y, αs(Q
2))ϕ(y,Q2)

ϕ(x,Q) =

∞∑

n=0

n∑

m=0

ϕn(x)Enm(Q,Q0)am(Q0) , a0 = 1



How to deal with series?How to deal with series?

Conformal partial waves are oscillating, hence one must be very careful or

� first convolution with the hard-scattering part improves convergency

� truncation of the partial wave expansion

error is of order 

numerical effects are small, since mixing 

is suppressed by initial condition,

e.g., 

NOTE:

O(1/Λcut)
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ResummationResummation of conformal partial wavesof conformal partial waves
If the DA is very narrow or wide it can not be approximated by the first few partial waves.

How to resum the series? 
[K. Kumerički, DM, K. Passek-Kumerički, A. Schäfer (06)]                                                          n

I. replace the series  by a contour integral

II. deform the contour where p is chosen so that 

� Mellin-Barnes transformation can be also used for DAs, e.g.,

� analogous technique can be employed for GPDs and DVCS 

(see next talk by Kresemir Kumerički)

an/n→ 0 for n→∞

p0 2

x(1− x)C
3/2
2n (2x− 1) ⇒ x2F1

(
−n− 1 n+ 2

2

∣∣∣x
)
+ {x→ 1− x}

A =
∞∑

n=0
even

an ⇒

p∑

n=0
even

an +
1

4i

∮ (∞)

(p)

dn cot
(π
2
n
)
an

A =

p∑

n=0
even

an +
i

4

∫ c+i∞

c−i∞

dn cot
(π
2
n
)
an where p < c < p+ 2



A generalA general representation convenient to userepresentation convenient to use

� generalization to flavor singlet case is straightforward

� offers to use the parameterization       ϕ(x,Q0) =
Γ(2P+2)
Γ2(P+1)

xP (1− x)P

e.g., transition form factor                                    (here LO)

x

evolution

(backwards)
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View beyond NLOView beyond NLO

restoration of conformal symmetry         conformal operator product expansion is true

normalization of Wilson-coefficients are borrowed from DIS, known to NNLO

(see next talk by Kresimir Kumerički) 

predictive power can be used to describe 2-photon processes at light-cone distances

(generalized Bjorken limit), e.g., photon-to-pion transition form factor 
[B. Melić, DM, K. Passek-Kumerički, (03)]

γ∗(q1)γ
(∗)(q2)→ π(P ) Q2 = −1

2

(
q21 + q22

)
ω =

q21−q
2
2

q21+q
2
2

‘Bjorken’ sum rule



� By means of conformal Ward-identities and constraints all twist-two NLO 
anomalous dimensions and evolution kernels were evaluated in MS scheme.

� For twist-three operators with maximal helicity (or R-charge, gluon operator 
should come soon) twist-3 evolution kernels have been evaluated and the 
spectrum of anomalous dimensions have been studied [AdS/CFT duality].  

� Twist-two evolution equations for DAs are straightforwardly to solve, 
however, the numerical treatment requires some effort and caution. 

� Although mixing effects due to the evolution are numerically small (since of 
the initial condition), they are for observables on the 10% level.

� For meson DAs that are not closed to the asymptotic form a Mellin-Barnes 
representation offers a convenient numerical treatment 

new DA ansätze

SummarySummary


