DA06: Workshop on Light-Cone Distribution Amplitudes 28-30 September 2006 , Durham

Evolution of distribution amplitudes

Dieter Müller
Ruhr-Universität Bochum \& Universität Regensburg

i. Why is evolution important for exclusive processes?
ii. A useful tool: restricted conformal symmetry
iii. Compendium of next-to-leading order results
iv. Solution of the evolution equation
v. View beyond NLO
vi. Summary

Why is evolution important?

- scaling violation is a pQCD prediction and might be confronted with experimental data, e.g., from collider experiments

H1 and ZEUS DVCS measurement canonical scaling: $\sigma \propto \mathcal{Q}^{-4}$ measured scaling: $\quad \propto \mathcal{Q}^{-3.08}$
scaling violation arises from evolution

non-perturbative input might be evaluated at a low scale (lattice, sum-rules, models)

evolution is part of a complete pQCD analysis (quantitatively not working to LO)

Restricted conformal symmetry in pQCD

Massless QCD Lagragian is invariant under conformal transformations $\mathrm{SO}(4,2)$
Poincaré transformations
dilatation:

$$
\begin{aligned}
& x^{\mu} \rightarrow x^{\prime \mu}=\lambda x^{\mu} \\
& x^{\mu} \rightarrow x^{\prime \mu}=\frac{x^{\mu}+a^{\mu}}{1+2 a \cdot x+a^{2} x^{2}}
\end{aligned}
$$

Restricted to the light-cone ($x^{\mu}=x_{-} n^{\mu}+x_{+} \bar{n}^{\mu}+x_{\perp}^{\mu}, n^{2}=\bar{n}^{2}=0$):

$$
x_{-} \rightarrow x_{-}+c, \quad x_{-}=\lambda x_{-}, \quad x_{-} \rightarrow x_{-}^{\prime}=\frac{x_{-}}{1+2 a x_{-}}
$$

collinear conformal group $\operatorname{SL}(2, \mathrm{R}) \sim \mathrm{SO}(2,1)$ (projection on a line):

$$
\Phi(\alpha n) \rightarrow \Phi^{\prime}(\alpha n)=(c \alpha+d)^{-2 j} \Phi\left(\frac{a \alpha+b}{c \alpha+d} n\right), \quad a d-b c=1
$$

is characterized by the conformal spin

$$
j=(\ell+s) / 2, \ell \text {-dimension, } s \text {-spin projection }
$$

generators: $\quad \mathbf{L}_{+}=-i \mathbf{P}_{+}, \mathbf{L}_{-}=(i / 2) \mathbf{K}_{-}, \mathbf{L}_{0}=(i / 2)\left(\mathbf{D}+\mathbf{M}_{-+}\right)$

$$
\left[\mathbf{L}_{0}, \mathbf{L}_{\mp}\right]=\mp \mathbf{L}_{\mp}, \quad\left[\mathbf{L}_{-}, \mathbf{L}_{+}\right]=-2 \mathbf{L}_{0}
$$

Note:

conformal symmetry is broken by the renormalization procedure (trace anomaly)

$$
g^{\mu \nu} \Theta_{\mu \nu}^{\mathrm{QCD}} \stackrel{\mathrm{EOM}}{=} \frac{d-4}{4}\left(G_{\mu \nu}^{a}\right)^{2}+\ldots=\frac{-\epsilon g+\beta(g)}{2 g}\left[\left(G_{\mu \nu}^{a}\right)^{2}\right]+\ldots
$$

and in the non-perturbative sector, since of the observed mass spectrum $\mathrm{P}^{2}=\mathrm{M}^{2} \neq 0$

$$
\exp \{i \lambda \mathbf{D}\} \mathbf{P}^{2} \exp \{-i \lambda \mathbf{D}\}=\exp \{2 \lambda\} \mathbf{P}^{2} \quad \square \quad \mathbf{P}^{2} \stackrel{!}{=} 0
$$

Restricted conformal symmetry remains a powerful tool, e.g., partial wave decomposition of DAs:

$$
\varphi(x)=\sum_{n=0}^{\infty} \omega_{n}(x) P_{n}^{\left(2 j_{1}-1,2 j_{2}-1\right)}(2 x-1)\langle 0| \mathbb{O}_{n, n}^{j_{1}, j_{2}}|M\rangle
$$

True conformal Ward identities are derived in the standard way within MS scheme [DM 94]:
I. reparameterization invariance of the path integral in the regularized theory
II. renormalization procedure
dilatation Ward identity (renormalization group equation):

$$
\begin{aligned}
\mathbf{L}_{0}^{(y, z)}\left\langle\left[\mathbb{Q}_{n l}\right] \psi(y) \bar{\psi}(z)\right\rangle= & -\sum_{m=0}^{n}\left[\ell_{n}^{\mathrm{can}} \delta_{n m}+\gamma_{n m}\right]\left\langle\left[\mathbb{Q}_{m l}\right] \psi(y) \bar{\psi}(z)\right\rangle \\
& +\frac{\beta}{g}\left\langle\left[\mathbb{Q}_{m l} \Delta^{g}\right] \psi(y) \bar{\psi}(z)\right\rangle+\cdots
\end{aligned}
$$

\square anomalous dimensions $\gamma_{n m}=\frac{\alpha_{s}}{2 \pi} \gamma_{n}^{(0)} \delta_{n m}+\cdots$ modify the canonical ones $\ell_{n}^{\text {can }}$

\rightarrow special conformal Ward identity:

$$
\mathbf{L}_{-}^{(y, z)}\left\langle\left[\mathbb{Q}_{n l}\right] \psi(y) \bar{\psi}(z)\right\rangle=i \sum_{m=0}^{n}\left[a(n, l) \delta_{n m}+\gamma_{n m}^{c}(l)\right]\left\langle\left[\mathbb{Q}_{m l-1}\right] \psi(y) \bar{\psi}(z)\right\rangle
$$

$$
+\frac{\beta}{g}\left\langle\left[\mathbb{Q}_{m l} \Delta_{-}^{g}\right] \psi(y) \bar{\psi}(z)\right\rangle+\cdots
$$

with $\quad a(n, l)=(n-l)(n+l+2 j-1)$ and special conformal anomaly

$$
\gamma_{n m}^{c}(l)=\frac{\alpha_{s}}{2 \pi} \gamma_{n m}^{c(0)}(l)+\cdots, \quad \gamma_{n m}^{c(0)}(l)=-b_{n m}(l) \gamma_{m}^{(0)}+w_{n m}
$$

conformal covariance is broken to LO in the MS scheme (finite part)

Conformal constraints \& anomalous dimensions to NLO

The conformal algebra induces a constraint between anomalies [DM 94]:

$$
\left[\mathbf{L}_{0}, \mathbf{L}_{-}\right]=-\mathbf{L}_{-} \quad \Rightarrow \quad\left[\hat{a}(l)+\hat{\gamma}^{c}(l)+2 \frac{\beta(g)}{g} \hat{b}(l), \hat{\gamma}\right]=0
$$

the off-diagonal entries are related by a recurrence relation

$$
2(n-m)(n+m+3) \gamma_{n m}\left(\alpha_{s}\right)=\left[\hat{\gamma}\left(\alpha_{s}\right), \hat{\gamma}^{c}\left(\alpha_{s}\right)+2 \frac{\beta}{g}\left(\alpha_{s}\right) \hat{b}(l)\right]_{n m}, n>m
$$

hence, we have to LO and to NLO
$\gamma_{n m}^{(0)}=0 \quad \gamma_{n m}^{(1)}=\frac{\gamma_{n}^{(0)}-\gamma_{m}^{(0)}}{2(n-m)(n+m+3)}\left(-b_{n m} \gamma_{m}^{(0)}+w_{n m}-\beta_{0} b_{n m}\right), n>m$
\checkmark this result coincides with the explicit evaluation of the flavor non-singlet kernel
\checkmark the anomalous dimensions are known in an analytic form
\checkmark it explains the unexpected conformal symmetry breaking: due to the minimal subtraction scheme or by the finite part of the LO operator, which breaks special conformal symmetry
\checkmark for $\beta=0$ conformal covariance can be restored to all orders in perturbation theory (changed scaling dimensions) [DM 97]
\checkmark dilatation operator can be even diagonalized within $\beta \neq 0$

Compendium of NLO resultis

At leading twist-two we have 7 different operators:

$$
\bar{\psi} \gamma_{+} \lambda^{\mathrm{NS}} \psi \quad\left\{\begin{array}{c}
\bar{\psi} \gamma_{+} \psi \\
G_{+\mu} g^{\nu \nu} G_{\nu+}
\end{array}\right\} \quad\left\{\begin{array}{c}
\bar{\psi} \gamma_{+} \gamma_{5} \psi \\
G_{+\mu} \epsilon^{+-\mu \nu} G_{\nu+}
\end{array}\right\} \quad\left\{\begin{array}{c}
\bar{\psi} \sigma_{+\perp} \psi \\
G_{+\mu} \tau^{\alpha \beta ; \mu \nu} G_{\nu+}
\end{array}\right\}
$$

the three anomalous dimension matrices in the singlet sector were evaluated up to NLO [A.V. Belitsky, DM (98)]

$$
\begin{aligned}
& \gamma_{n m}^{(1)}=\boldsymbol{\gamma}_{n}^{(1)} \delta_{n m}+\left.\boldsymbol{\gamma}_{n m}^{\mathrm{ND}(1)}\right|_{n>m}, \quad \hat{\boldsymbol{\gamma}}^{\mathrm{ND}(1)}=-\left[\hat{\boldsymbol{\gamma}}^{(0)}, \hat{\boldsymbol{d}}\right]\left(\beta_{0} \hat{\mathbf{1}}+\hat{\boldsymbol{\gamma}}^{(0)}\right)+\left[\begin{array}{ll}
\hat{\boldsymbol{\gamma}}^{(0)}, \hat{\boldsymbol{g}}
\end{array}\right] \\
& \hat{\boldsymbol{\gamma}}=\left(\begin{array}{lll}
Q Q_{\hat{\gamma}} & Q G_{\hat{\gamma}} \\
G Q_{\hat{\gamma}} & G G_{\hat{\gamma}}
\end{array}\right), \quad \boldsymbol{d}_{n m}=\frac{1}{a(n, m)}\left(\begin{array}{ll}
\hat{b} & 0 \\
0 & \hat{b}
\end{array}\right)_{n m}, \quad \boldsymbol{g}_{n m}=\frac{1}{a(n, m)}\left(\begin{array}{cc}
Q Q_{\hat{\hat{w}}} & Q G_{\hat{\boldsymbol{w}}} \\
G Q_{\hat{W}} & G G_{\hat{w}}
\end{array}\right)_{n m}
\end{aligned}
$$

where the diagonal part $\gamma_{n}^{(1)}$ coincides with DIS anomalous dimensions
$>$ from the analytic expressions we were able to construct all ten evolution kernels [A.V. Belitsky, A. Freund, DM (99/00)]
\checkmark consistency checks based on supersymmetry
\checkmark explicit evaluation of the β-proportional terms were performed
twist-3 NLO kernels are evaluated for $\Delta^{\uparrow \uparrow \uparrow}$ DA and SUSY scalar operator [A.V. Belitsky, G. Korchemsky, DM (05/06)]

Solution of the evolution equation

$$
Q^{2} \frac{d}{d Q^{2}} \varphi\left(x, Q^{2}\right)=\int_{0}^{1} d y V\left(x, y, \alpha_{s}\left(Q^{2}\right)\right) \varphi\left(y, Q^{2}\right)
$$

The solution beyond LO leads in the MS scheme to a mixing of conformal partial waves

$$
\begin{array}{ll}
\varphi(x, Q)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \varphi_{n}(x) \mathcal{E}_{n m}\left(Q, Q_{0}\right) a_{m}\left(Q_{0}\right), & a_{0}=1 \\
Q \frac{d}{d Q} \mathcal{E}_{n m}\left(Q, Q_{0}\right)=-\sum_{l=m}^{n} \gamma_{n l}\left(\alpha_{s}(Q)\right) \mathcal{E}_{l m}\left(Q, Q_{0}\right), & \mathcal{E}_{n m}\left(Q_{0}, Q_{0}\right)=\delta_{n m}
\end{array}
$$

The solution, given by a path ordered exponential, can be easily evaluated

$$
\mathcal{E}_{n m}\left(Q, Q_{0}\right)=\left[\mathcal{P} \exp \left\{-\int_{Q_{0}}^{Q} \frac{d \mu}{\mu} \hat{\gamma}\left(\alpha_{s}(\mu)\right)\right\}\right]_{n m}
$$

NOTE: that even for an asymptotic input distribution all harmonics are contributing

$$
\varphi^{\text {asy }(0)}=6 x(1-x) \underset{Q \rightarrow \infty, \alpha_{s}^{*}-\text { con. }}{\Rightarrow} \underset{\text { asy }(1)}{\Rightarrow}=6 x(1-x)\left(1+\frac{\alpha_{s}^{*}}{2 \pi} \frac{4}{3}\left[\ln ^{2} \frac{x}{1-x}+2-\frac{\pi^{2}}{3}\right]\right)
$$

How to deal with series?

Conformal partial waves are oscillating, hence one must be very careful or
$>$ first convolution with the hard-scattering part improves convergency

$$
\int_{0}^{1} \frac{d x}{x} \varphi(x, Q)=3 \sum_{n=0}^{\infty} \sum_{m=0}^{n} \mathcal{E}_{n m}\left(Q, Q_{0}\right) a_{m}\left(Q_{0}\right)
$$

$>$ truncation of the partial wave expansion

$$
\int_{0}^{1} \frac{d x}{x} \varphi(x, Q)=3 \sum_{m=0}^{\Lambda_{\text {model }}} \sum_{n=m}^{m+2 \Lambda} \mathcal{E}_{n m}\left(Q, Q_{0}\right) a_{m}\left(Q_{0}\right)
$$

error is of order $O\left(1 / \Lambda_{\text {cut }}\right)$

numerical effects are small, since mixing is suppressed by initial condition,
e.g.,

$$
\int_{0}^{1} \frac{d x}{x} \varphi^{\operatorname{asy}(0)}=3
$$

NOTE:
$Q \rightarrow \infty$
$\alpha_{s}^{*}-$ con.

$$
\square \int_{0}^{1} \frac{d x}{x} \varphi^{\operatorname{asy}(1)}=3+8 \frac{\alpha_{s}^{*}}{2 \pi}
$$

Resummation of conformal partial waves

If the DA is very narrow or wide it can not be approximated by the first few partial waves.
How to resum the series?
[K. Kumerički, DM, K. Passek-Kumerički, A. Schäfer (06)]
I. replace the series by a contour integral
$A=\sum_{\substack{n=0 \\ \text { even }}}^{\infty} a_{n} \Rightarrow \sum_{\substack{n=0 \\ \text { even }}}^{p} a_{n}+\frac{1}{4 i} \oint_{(p)}^{(\infty)} d n \cot \left(\frac{\pi}{2} n\right) a_{n}$
II. deform the contour where p is chosen so that $a_{n} / n \rightarrow 0$ for $n \rightarrow \infty$
$A=\sum_{\substack{n=0 \\ \text { even }}}^{p} a_{n}+\frac{i}{4} \int_{c-i \infty}^{c+i \infty} d n \cot \left(\frac{\pi}{2} n\right) a_{n} \quad$ where $\quad p<c<p+2$

* Mellin-Barnes transformation can be also used for DAs, e.g.,

$$
x(1-x) C_{2 n}^{3 / 2}(2 x-1) \quad \Rightarrow \quad x_{2} F_{1}\left(\left.\begin{array}{c}
-n-1 n+2 \\
2
\end{array} \right\rvert\, x\right)+\{x \rightarrow 1-x\}
$$

* analogous technique can be employed for GPDs and DVCS (see next talk by Kresemir Kumerički)

A general representation convenient to use

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{x} \varphi(x, Q) & =\sum_{n=0}^{p} E_{n}\left(Q, Q_{0}\right) a_{n}\left(Q_{0}\right)+\frac{i}{4} \int_{c-i \infty}^{c+i \infty} d n \cot \left(\frac{\pi}{2} n\right) E_{n}\left(Q, Q_{0}\right) a_{n}\left(Q_{0}\right) \\
E_{n}\left(Q, Q_{0}\right) & =\frac{i}{4} \int_{-1 / 2-i \infty}^{-1 / 2+i \infty} d m \cot \left(\frac{\pi}{2} m\right) \mathcal{E}_{n+m, n}\left(Q, Q_{0}\right)
\end{aligned}
$$

* generalization to flavor singlet case is straightforward
offers to use the parameterization $\varphi\left(x, Q_{0}\right)=\frac{\Gamma(2 P+2)}{\Gamma^{2}(P+1)} x^{P}(1-x)^{P}$
e.g., transition form factor $F_{\gamma \gamma^{*} \pi}\left(\mathcal{Q}^{2} \mid P, Q_{0}^{2}=10 \mathrm{GeV}^{2}, \Lambda_{\mathrm{QCD}}=500 \mathrm{MeV}\right)$ (here LO)

View beyond NLO

restoration of conformal symmetry \Rightarrow conformal operator product expansion is true normalization of Wilson-coefficients are borrowed from DIS, known to NNLO (see next talk by Kresimir Kumerički)
predictive power can be used to describe 2-photon processes at light-cone distances (generalized Bjorken limit), e.g., photon-to-pion transition form factor
[B. Melić, DM, K. Passek-Kumerički, (03)]

$$
\gamma^{*}\left(q_{1}\right) \gamma^{(*)}\left(q_{2}\right) \rightarrow \pi(P) \quad Q^{2}=-\frac{1}{2}\left(q_{1}^{2}+q_{2}^{2}\right) \quad \omega=\frac{q_{1}^{2}-q_{2}^{2}}{q_{1}^{2}+q_{2}^{2}}
$$

Summary

* By means of conformal Ward-identities and constraints all twist-two NLO anomalous dimensions and evolution kernels were evaluated in MS scheme.
* For twist-three operators with maximal helicity (or R-charge, gluon operator should come soon) twist-3 evolution kernels have been evaluated and the spectrum of anomalous dimensions have been studied [AdS/CFT duality].
* Twist-two evolution equations for DAs are straightforwardly to solve, however, the numerical treatment requires some effort and caution.
* Although mixing effects due to the evolution are numerically small (since of the initial condition), they are for observables on the 10% level.
* For meson DAs that are not closed to the asymptotic form a Mellin-Barnes representation offers a convenient numerical treatment
new DA ansätze

