Baryon Distribution Amplitudes:

Alexander Lenz

University of Regensburg

in collaboration with

V. Braun, R. Fries, N. Mahnke, A. Peters, G. Peters, A. Radyushkin, E. Stein and M. Wittmann

Form factors from Baryon DAs via LCSR

- Basic idea
- Example: Em form factors of the nucleon
- L.H.S. of the sum rule
- R.H.S. of the sum rule
- Combining L. & R.H.S. of the sum rule

Current activities - including higher twist DAs:

- Literature Overview
- Determining the DA
- Nucleon form factors
- Decays of Baryons

Outlook

To describe the transition of a baryon B to a baryon N via the current j_{μ}

$$B(P') \xrightarrow{j_{\mu}} N(P), \qquad P' = P - q$$

Start with a correlation function

$$T_{\mu}(P,q) = \int d^4x e^{-ipx} \langle 0|T\{\eta(0)j_{\mu}(x)\}|N(P)\rangle$$

Interpolating field η : "creating B from the vacuum" e.g. $\eta_{CZ}(x) = \varepsilon^{ijk} \begin{bmatrix} u^i(x)(C\not z) \ u^j(x) \end{bmatrix} \quad (\gamma_5 \not z) \quad d^k_{\delta}(x) \Rightarrow \mathsf{B} = \mathsf{Proton}$ or $\eta_{\mathrm{Ioffe}}(x) = \varepsilon^{ijk} \begin{bmatrix} u^i(x)(C\gamma_{\nu}) \ u^j(x) \end{bmatrix} \quad (\gamma_5 \gamma^{\nu}) \ d^k_{\delta}(x) \Rightarrow \mathsf{B} = \mathsf{Proton}$

$\begin{array}{ll} \bullet \quad \text{Current } j_{\mu} \\ \text{e.g. } j_{\mu}^{\text{em}}(x) = e_{u} \bar{u}(x) \gamma_{\mu} u(x) + e_{d} \bar{d}(x) \gamma_{\mu} d(x) \quad \Rightarrow \text{em form factors} \\ \text{e.g. } j_{\mu}^{\text{weak}}(x) = \bar{u}(x) \gamma_{\mu} (1 - \gamma_{5}) d(x) \quad \Rightarrow \text{weak decay} \end{array}$

Now: Express T_{μ} in two different ways

Example: EM form factors of the Nucleon

■ Rosenbluth-formula (1955) for elastic *e*⁻-N scattering (1 photon exchange)

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2) \tan^2 \frac{\theta_e}{2}\right]$$

$$Q^2 = -q^2, \ \tau = \frac{Q^2}{4M^2c^2}, \ \theta_e = \text{ scattering} - \text{angle of } e^-$$

- Electric $G_E(Q^2)$ and magnetic $G_M(Q^2)$ Sachs form factors
- Interpretation in Breit frame:
 - $G_E(Q^2)$ Fourier transform of electric charge distribution
 - $G_M(Q^2)$ Fourier transform of magnetization density
- Relation of Dirac and Pauli form factors to Sachs form factors

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2), \qquad G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2),$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^n(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = \mu_n = -1.91.$$

$$G_M^p(0) = \mu_p = 2.79, \ G_M^p(0) = 2.79, \$$

L.H.S. of the sum rule

Inserting a full set of one-particle states in the correlation function we obtain

$$T_{\mu}(P,q) = \frac{1}{m_{p}^{2} - (P')^{2}} \sum_{s} \langle 0|\eta_{p}|P',s\rangle\langle P',s|j_{\mu}^{em}|P\rangle + \dots$$

where the dots represent contributions of higher resonances.

The arising matrix elements read

• $\langle 0|\eta_{\rm CZ}|P\rangle = f_N P z \not z N(P)$ or $\langle 0|\eta_{\rm Ioffe}|P\rangle = \lambda_1 m_p N(P)$ with the non-perturbative constants f_N , λ_1

 $\Rightarrow T_{\mu} = T_{\mu}(F_1, F_2)$ Which η to use? Determine $f_N, \lambda_1, ...$

R.H.S. of the sum rule

Do all possible Wick-contractions in T_{μ} :

$$T_{\mu}(P,q) \propto \int d^4x e^{-ipx} \dots \ \Gamma_1^{\alpha\beta} \Gamma_2^{\delta\gamma} 4\langle 0|\epsilon_{ijk} u^i_{\alpha} u^j_{\beta} d^k_{\gamma}|N(P)\rangle$$

and insert the Baryon DA

$$4\langle 0|\epsilon_{ijk}u^i_{\alpha}u^j_{\beta}d^k_{\gamma}|N(P)\rangle = \sum \Gamma_3^{\alpha\beta}\Gamma_4^{\gamma}F$$

with Dirac structures Γ_i and 24 distribution amplitudes FIn the end all DAs can be reduced to eight non-perturbative parameters

$$\Rightarrow T_{\mu} = T_{\mu}(f_N, \lambda_1, \lambda_2, V_1^d, A_1^u, f_1^d, f_1^u, f_2^d)$$

Determine f_N, λ_1, \dots

Combining L.H.S. and R.H.S.

In order to combine the two expressions for T_{μ} we perform first a projection

 $\Rightarrow \Lambda_{+}T_{z} = pz \left(m_{p}\mathcal{A}_{1}^{\mathrm{em}} + \not{q}_{\perp}\mathcal{B}_{1}^{\mathrm{em}} \right) N^{+}(P)$

with $z^2 = 0 = qz; p_\mu = P_\mu - z_\mu m_p^2 / (2Pz); \Lambda^+ = p \not z / (2pz); \Lambda^+ N = N^+$

$$\mathcal{B}_{1}^{\text{em}} = \frac{\lambda_{1} F_{2}^{\text{em}}}{m_{p}^{2} - P^{\prime 2}} = -2e_{d} \int_{0}^{1} \frac{dx_{3}}{(q - x_{3}P)^{2}} \int_{0}^{1 - x_{3}} dx_{1} 120x_{1}x_{2}x_{3}\delta(1 - x_{1} - x_{2} - x_{3})f_{N} + \dots$$

To supress the contributions of higher resonances we perform a Borel trafo

$$F_2^{\text{em}} = 2e_d \frac{1}{\lambda_1} \int_{x_0}^1 \frac{dx}{x} \int_{0}^{1-x} dx_1 120x_1 x_2 x \delta(1-x_1-x_2-x) f_N + \dots$$

Current activities - including higher twist DAs

- The nucleon DA up to twist 6 Braun, Fries, Mahnke, Stein, 2000
- LCSR: em form factors of the nucleon use η_{CZ} ; x^2 -corrections to V_1 Braun, A.L., Mahnke, Stein, 2001
- LCSR: em form factors of the nucleon use isospin conserving η_{Im}.
 A.L., Wittmann, Stein, 2003
- LCSR: form factors of the nucleon, $n \rightarrow p$ use $\eta_{CZ}, \eta_{Im.}, \eta_{Ioffe}$; x^2 -correct. to A_1, T_1 estimate of non-perturbative parameters Braun, A.L., Wittmann, 2006
- LCSR: $N \rightarrow \Delta$ Braun, A.L., Peters, Radyushkin, 2005

- LCSR: $\Lambda_b \rightarrow p \, l \bar{\nu}$ x^2 -corrections to V_1, A_1, T_1 Huang, Wang, 2004
- LCSR: Scalar form-factor of the nucleon use η_{CZ}
 Z. Wang, Wan, Yang, 2006
- LCSR: axial and induced pseudoscalar form-factor of the nucleon use η_{CZ}
 Z. Wang, Wan, Yang, 2006
- LCSR: $\Lambda_c \rightarrow \Lambda l \bar{\nu}$ Axial Λ -DAs of leading conformal spin Huang, Wang, 2006
- LCSR: $\Sigma \rightarrow N$ use η_{Ioffe}
 - Z. Wang, 2006

Determining the Nucleon DA upto twist 6 I

$$\begin{split} 4\langle 0| \, \varepsilon^{ijk} u^i_{\alpha}(a_1x) u^j_{\beta}(a_2x) d^k_{\gamma}(a_3x) \, |P\rangle = \\ & S_1 M C_{\alpha\beta} \left(\gamma_5 N\right)_{\gamma} + S_2 M^2 C_{\alpha\beta} \left(\not{x} \gamma_5 N\right)_{\gamma} \mathcal{P}_1 M \left(\gamma_5 C\right)_{\alpha\beta} N_{\gamma} + \mathcal{P}_2 M^2 \left(\gamma_5 C\right)_{\alpha\beta} \left(\not{x} N\right)_{\gamma} \\ & + \left(\mathcal{V}_1 + \frac{x^2 m_N^2}{4} \mathcal{V}_1^M\right) \left(\mathcal{P} C\right)_{\alpha\beta} \left(\gamma_5 N\right)_{\gamma} + \mathcal{V}_2 M \left(\mathcal{P} C\right)_{\alpha\beta} \left(\not{x} \gamma_5 N\right)_{\gamma} + \mathcal{V}_3 M \left(\gamma_{\mu} C\right)_{\alpha\beta} \left(\gamma^{\mu} \gamma_5 N\right)_{\gamma} \\ & + \mathcal{V}_4 M^2 \left(\not{x} C \right)_{\alpha\beta} \left(\gamma_5 N\right)_{\gamma} + \mathcal{V}_5 M^2 \left(\gamma_{\mu} C \right)_{\alpha\beta} \left(i \sigma^{\mu\nu} x_{\nu} \gamma_5 N\right)_{\gamma} + \mathcal{V}_6 M^3 \left(\not{x} C \right)_{\alpha\beta} \left(\not{x} \gamma_5 N\right)_{\gamma} \\ & + \left(\mathcal{A}_1 + \frac{x^2 m_N^2}{4} \mathcal{A}_1^M\right) \left(\mathcal{P} \gamma_5 C\right)_{\alpha\beta} N_{\gamma} + \mathcal{A}_2 M \left(\mathcal{P} \gamma_5 C\right)_{\alpha\beta} \left(\not{x} N\right)_{\gamma} + \mathcal{A}_3 M \left(\gamma_{\mu} \gamma_5 C\right)_{\alpha\beta} \left(\gamma^{\mu} N\right)_{\gamma} \\ & + \mathcal{A}_4 M^2 \left(\not{x} \gamma_5 C \right)_{\alpha\beta} N_{\gamma} + \mathcal{A}_5 M^2 \left(\gamma_{\mu} \gamma_5 C \right)_{\alpha\beta} \left(i \sigma^{\mu\nu} x_{\nu} N \right)_{\gamma} + \mathcal{A}_6 M^3 \left(\not{x} \gamma_5 C \right)_{\alpha\beta} \left(\not{x} N \right)_{\gamma} \\ & + \left(\mathcal{T}_1 + \frac{x^2 m_N^2}{4} \mathcal{T}_1^M\right) \left(i \sigma_{\mu P} C \right)_{\alpha\beta} \left(\gamma^{\mu} \gamma_5 N \right)_{\gamma} + \mathcal{T}_2 M \left(i \sigma_{x P} C \right)_{\alpha\beta} \left(\gamma^{\mu} \gamma_5 N \right)_{\gamma} + \mathcal{T}_3 M (\sigma_{\mu\nu} C)_{\alpha\beta} \left(\sigma^{\mu\nu} \gamma_5 N \right)_{\gamma} \\ & + \mathcal{T}_7 M^2 \left(\sigma_{\mu\nu} C \right)_{\alpha\beta} \left(\sigma^{\mu\nu} \not{x} \gamma_5 N \right)_{\gamma} + \mathcal{T}_8 M^3 \left(x^{\nu} \sigma_{\mu\nu} C \right)_{\alpha\beta} \left(\sigma^{\mu\varrho} x_{\varrho} \gamma_5 N \right)_{\gamma} \\ \end{array} \right)$$

* The 24 functions $\mathcal{F}^{(i)} = \mathcal{S}_i, \mathcal{P}_i, \mathcal{A}_i, \mathcal{V}_i, \mathcal{T}_i$ can be related to 8 LCDAs of twist-3 to twist-6. * In leading conformal spin we have 3 parameters: $\lambda_1, \lambda_2, f_N$ * in NL conformal spin we have 5 parameters: $V_1^d, A_1^u, f_1^d, f_1^u, f_2^d$ * \mathcal{V}_1^M : BLMS 2001

* $\mathcal{A}_1^M, \mathcal{T}_1^M$: Huang, Wang 2004; **BLW 2006**.

Definition of the non-perturbative parameters

$$\langle 0|\varepsilon^{ijk} \left[u^{i}(0)(C\not z) u^{j}(0) \right] \quad (\gamma_{5}\not z) \quad d^{k}_{\delta}(0)|P\rangle = f_{N}pz\not zN(P)$$

$$\langle 0|\varepsilon^{ijk} \left[u^{i}(0)(C\gamma_{\mu}) u^{j}(0) \right] \quad (\gamma_{5}\gamma^{\mu}) \quad d^{k}_{\delta}(0)|P\rangle = \lambda_{1}m_{N}N(P)$$

$$\langle 0|\varepsilon^{ijk} \left[u^{i}(0)(C\sigma_{\mu\nu}) u^{j}(0) \right] \quad (\gamma_{5}\sigma^{\mu\nu}) \quad d^{k}_{\delta}(0)|P\rangle = \lambda_{2}m_{N}N(P)$$

 $\langle 0|\varepsilon^{ijk} \left[u^i(0)(C\not z) \, u^j(0) \right] \quad (\gamma_5 \not z) \quad (iz\vec{D}d^k_\delta)(0)|P\rangle = f_N V_1^d(pz)^2 \not z N(P)$

. . .

. . .

Determining the Nucleon DA upto twist 6 III

• Leading twist: f_N, V_1^d, A_1^d

 QCD SR: Chernyak, Zhitnitsky 1984; King, Sachrajda 1987; Gari, Stefanis 1987; Chernyak, Ogloblin, Zhitnitsky 1988, 1989; Bolz, Kroll 1996.

 $f_N = (5.0 \pm 0.5) \cdot 10^{-3} \text{GeV}^2$ $A_1^u = 0.38 \pm 0.15$ $V_1^d = 0.23 \pm 0.03$

- Lattice: Martinelli, Sachrajda 1989; Aoki et al. 2006.
- ◆ Asymptotic: $A_1^u = 0$ $V_1^d = 1/3$ ◆ LCSR: BLW 2006 $A_1^u = 0.13$ $V_1^d = 0.30$
- Higher twist
 - leading conformal spin: λ_1, λ_2 QCD SR: BFMS 2000, BLW 2006

$$\lambda_1 = -(2.7 \pm 0.9) \cdot 10^{-2} \text{GeV}^2$$
 $\lambda_2 = (5.4 \pm 1.9) \cdot 10^{-2} \text{GeV}^2$

• next-to-leading conformal spin: f_1^d, f_1^u, f_2^d

Method	f_1^d	f_1^u	f_2^d	authors
QCD SR	0.40 ± 0.05	0.07 ± 0.05	0.22 ± 0.05	BFMS 2000, BLW 2006
LCSR	0.33	0.09	0.25	BFMS 2000, BLW 2006
asymptotic	0.30	0.10	4/15	

LCSR for the nucleon form factors

- EM form factors using η_{CZ} : BLMS 2001
 - Higher twist is important
- EM form factors using isospin conserving η_{IM} : LWS 2004
 - η_{CZ} leads to unphysical isospin violating effects
- **E**M and weak form factors, compare different η s: **BLW 2006**
 - surprisingly good description of data

 $\Rightarrow \eta_{\rm Ioffe}$ seems to be the best choice

- Scalar form factor of the nucleon using η_{CZ} : Wang, Wan 2006
- Axial and ps form factor of the nucleon using η_{CZ} : Wang, Wan 2006
 - * \Rightarrow use η_{Ioffe} to compare experiment and LCSR
 - * FF depend on 5 Parameters $\lambda_1/f_N, A_1^u, V_1^d, f_1^d, f_1^u$

Nucleon electromagnetic form factors

 $\langle N(P')|j_{\mu}^{\rm em}(0)|N(P)\rangle = \bar{N}(P')\left[\gamma_{\mu}F_{1}(Q^{2}) - i\frac{\sigma_{\mu\nu}q^{\nu}}{2m_{N}}F_{2}(Q^{2})\right]N(P)$

• Leading order LCSR, BLW distribution amplitudes

Braun, Lenz, Wittmann; PRD73 (2006) 094019

Nucleon axial vector form factors

 $\langle N(P')|A_{\mu}(0)|N(P)\rangle = \bar{N}(P') \left[\gamma_{\mu} G_A(Q^2) - \frac{q_{\mu}}{2m_N} G_P(Q^2) - i \frac{\sigma_{\mu\nu} q^{\nu}}{2m_N} G_T(Q^2) \right] \gamma_5 N(P)$

• Leading order LCSR, BLW distribution amplitudes

Braun, Lenz, Wittmann; PRD73 (2006) 094019

LCSR for transitions

- Huang, Wang, 2004: $\Lambda_b \rightarrow p l \nu$
 - Interpolating field: $\eta_{\Lambda_b} = \epsilon_{ijk} u^i C \not z d^j \cdot \gamma_5 \not z b^k$ vs. $\eta_{\Lambda_b} = \epsilon_{ijk} u^i C \not z d^j \cdot \gamma_5 \not z h_v^k$
 - Determine f_{Λ} from QCD-SR
 - HQET \approx 1/10 QCD!
- **BLPR 2005:** $N \rightarrow \Delta$
 - Disentangle $N \rightarrow N^*$ (spin 1/2)
 - Interpolating field: $\eta_{\Delta} = \epsilon_{ijk} \left(2u^i C \gamma_{\mu} d^j \cdot \not z u^k + u^i C \gamma_{\mu} u^j \cdot \not z d^k \right)$
- BLW 2006: *n* → *p*
- Huang, Wang, 2006: $\Lambda_c \rightarrow \Lambda l \nu$
 - Determine $\Lambda\text{-}\mathsf{DA}$ up to twist-6 and leading conformal spin
 - Interpolating field: $\eta_{\Lambda_c} = \epsilon_{ijk} u^i C \gamma_5 \not z d^j \cdot \not z c^k$
 - only tw-3 agrees with experiment
- Wang, 2006: $\Sigma \rightarrow N$
 - Interpolating field: $\eta_{\Sigma} = \epsilon_{ijk} d^i C \gamma_{\mu} d^j \cdot \gamma_5 \gamma^{\mu} s^k$
 - Wang compared results for $Q^2 = 0$ with the data!

Nucleon DA

- α_s corrections to LCSR for form factors of the nucleon,
 Compare LCSR to experiment and fit the non-perturbative parameters
 Braun, A.L., Passek-Kumericki, Peters, in progress
- Lattice determination of the non-perturbative parameters
- Decay of heavy baryons
 - LCSR for $\Lambda_b \to p \, l \bar{\nu}$
 - A.L., Wankerl, in progress
 - LCSR for $\Lambda_b \to \Lambda_c \, l + l$
 - A.L., Rohrwild, planned
- LCSR for pion electro-production
 Braun, Ivanov, A.L., Peters, in progress