Constraints on the twist-2 pion DA from the measurements of pion form factors

Alexander Khodjamirian (Uni. Siegen)

DA06: Workshop on Light-Cone Distribution Amplitudes, IPPP, Durham, 28.09.06

Pion distribution amplitude of twist 2

- Formal definition at $\left(x_{2}-x_{1}\right)^{2} \rightarrow 0$:
$\langle 0| \bar{u}\left(x_{2}\right)\left[x_{2}, x_{1}\right] \gamma_{\mu} \gamma_{5} d\left(x_{1}\right)\left|\pi^{-}(p)\right\rangle=i f_{\pi} p_{\mu} \int_{0}^{1} d u e^{-i u p x_{1}-i \bar{u} p x_{2}} \varphi_{\pi}(u, \mu)+t w i s t 4+\ldots$
- Gegenbauer Expansion:

$$
\varphi_{\pi}(u, \mu)=6 u \bar{u}\left[1+\sum_{n=1} a_{2 n}^{\pi}(\mu) C_{2 n}^{3 / 2}(u-\bar{u})\right]
$$

The ongoing hunt for $a_{2 n}^{\pi}\left(\mu_{0}\right), \mu_{0} \sim 1 \mathrm{GeV}$

Constraining Gegenbauer coefficients

- Form factors: $F_{\pi}\left(Q^{2}\right), F_{\pi \gamma \gamma *}\left(Q^{2}\right), f_{B \pi}^{+}\left(q^{2}\right), \ldots$, provided there is factorization

$$
F\left(Q^{2}\right)=\int d u T_{\text {hard }}\left(Q^{2}, u, \mu\right) \varphi_{\pi}(u, \mu)+\left\{\operatorname{tw} 4,6, \ldots \sim\left[1 / Q^{2}\right]^{k}\right\}
$$

* calculate $T_{\text {hard }}$, incl. $O\left(\alpha_{s}\right), O\left(\alpha_{s}^{2}\right)$
*estimate tw $4,6, \ldots$, are they small enough ?
* measure the form factor at large enough Q^{2}
* obtain intervals of $a_{2,4, . .}^{\pi}$ depending on the adopted model/ansatz for $\varphi_{\pi}(u, \mu)$
\Rightarrow Pion form factors yield constraints in the "space" of $a_{2 n}^{\pi}$

How many Gegenbauer coeffs contribute?

$$
\text { one: } \varphi_{\pi}(u, \mu)=6 u(1-u)\left[1+a_{2}(\mu) C_{2}^{3 / 2}(2 u-1)\right]
$$

How many Gegenbauer coeffs contribute?

$$
\text { one: } \varphi_{\pi}(u, \mu)=6 u(1-u)\left[1+a_{2}(\mu) C_{2}^{3 / 2}(2 u-1)\right]
$$

or maybe a few: $\varphi_{\pi}(u, \mu)=$ $6 u(1-u)\left[1+a_{2}(\mu) \ldots+a_{4}(\mu) \ldots+a_{6}(\mu) \ldots\right]$

$$
\text { or infinitely many } ? a_{2}^{\pi}, \ldots, a_{1000}^{\pi}, \ldots
$$

- a recent model of n-behavior of $a_{2 n}$,
inspired by conformal expansion and asymptotics [Ball-Talbot, 2005]

Calculating Gegenbauer coefficients

- QCD sum rules for $\left.a_{2 n}^{\pi}\left(\mu_{0}\right) \sim\langle 0| O_{2 n}^{t w}{ }^{2}|\pi\rangle\right|_{\mu_{0}}$ from $\langle 0| T\left\{O_{2 n}^{t w}{ }^{2}(x) j_{\pi}(0)\right\}|0\rangle$, [Chernyak-Zhitnisky (1984)]
- only a_{2}^{π} accessible within the standard (SVZ) local condensate OPE;
- models of nonlocal condensates, [Mikhailov,Radyushkin(1986)] yield $a_{2 n}^{\pi}$ at $n>2$, predict $a_{2 n} \rightarrow 0$ at large n
- recent "improved NLC"[Bakulev, Pimikov(2006)]
- lattice QCD: recent encouraging results on a_{2}^{π}, are $a_{4,6, . .}^{\pi}$ accessible?
- to complete the list:"instanton liquid" models

A compilation of recent results

Method	$a_{2}^{\pi}(1 \mathrm{GeV})$	$a_{4}^{\pi}(1 \mathrm{GeV})$	Details	Ref.
$\overline{F_{\pi}, \mathrm{LCSR}}$ \oplus old Jlab data	$\begin{gathered} 0.24 \pm 0.14 \\ \pm 0.08 \end{gathered}$	-	assump. $a_{4}=0$	Bijnens, A.K. (2002)
$\begin{gathered} F_{\pi}, \text { LCSR } \\ \oplus \text { old Jlab,SLAC data } \end{gathered}$	0.2 ± 0.03	-0.03 ± 0.06	R-model tw. 4	Agaev(2005)
$\begin{gathered} F_{\pi \gamma \gamma^{*}}, \text { LCSR } \\ \oplus \text { CLEO data } \end{gathered}$	$\begin{aligned} & \hline 0.31 \\ & 0.44 \end{aligned}$	$\begin{aligned} & \hline-0.35 \\ & -0.40 \end{aligned}$	central points R-model tw. 4	Bakulev,Mikhailov, Stefanis[BMS](2006)
$\begin{gathered} F_{\pi \gamma \gamma^{*}}, \text { LCSR } \\ \oplus \text { CLEO data } \end{gathered}$	$0.27(\pm 0.10)$	$-0.3(\pm 0.2)$	uncert. correl. R-model tw. 4	Agaev(2006)
$f_{B \pi}, \mathrm{LCSR}$	0.19 ± 0.19	≥-0.07	$\frac{d \Gamma\left(B \rightarrow \pi l \nu_{l}\right)}{d q^{2}}$	Ball,Zwicky(2005)
QCD SR	$\begin{gathered} 0.26_{-.09}^{+.21} \\ 0.28 \pm 0.08 \end{gathered}$			A.K.,Mannel, Melcher (2004) Ball,Braun,Lenz(2006)
QCDSR,NLC	0.19 ± 0.06	-0.13干 0.09	$a_{n>4}$ small	BMS (2005)
Lattice (quench.)	$\begin{gathered} 0.34 \pm 0.21 \\ (\text { from }[\mathrm{BMS}]) \end{gathered}$	-		L. Del Debbio [UKQCD talk at LC 2004
Lattice $\left(n_{f}=2\right)$	$\begin{gathered} 0.27 \pm 0.15 \\ \text { (LO evol.) } \\ \hline \end{gathered}$	-	$\begin{aligned} & a_{2}^{\pi}(2 \mathrm{GeV})= \\ & =.201 \pm .114 \end{aligned}$	$\begin{aligned} & \text { QCDF/UKQCD } \\ & \text { Braun et al.(2006) } \end{aligned}$

Pion e.m. form factor

"hard", factoriz.

"soft", nonfact.

The QCD asymptotics:

$$
F_{\pi}\left(Q^{2}\right)^{\text {asympt }}=\left.\frac{8 \pi \alpha_{s} f_{\pi}^{2}}{9 Q^{2}}\left(\int_{0}^{1} d u \frac{\varphi_{\pi}(u, \mu)}{\bar{u}}\right)^{2}\right|_{\mu \sim Q}
$$

[Chernyak, Zhitnisky; Efremov,Radyushkin; Brodsky-Lepage (1977-1980)]

The form factor contains important (and even dominant !) nonasymptotic part at $Q^{2} \leq 10 \mathrm{GeV}^{2}$ (at least):

$$
F_{\pi}\left(Q^{2}\right)=F_{\pi}\left(Q^{2}\right)^{\text {asympt }}+F_{\pi}\left(Q^{2}\right)^{\text {nonas }}=F_{\pi}\left(Q^{2}\right)^{\text {hard }}+F_{\pi}\left(Q^{2}\right)^{\text {soft }}
$$

- combining $F_{\pi}\left(Q^{2}\right)^{\text {hard }}$ from PQCD and a model for $F_{\pi}\left(Q^{2}\right)^{\text {soft }}$?
- is QCD calculation of $F_{\pi}\left(Q^{2}\right)^{s o f t}$ possible?
a realistic solution : QCD light-cone sum rules
[V. Braun, I. Halperin (1999), V. Braun, M. Maul, A.K. (2000)]

Light-cone sum rule for $F_{\pi}^{e m}\left(Q^{2}\right)$

The correlation function:

$$
T_{\mu \nu}(p, q)=i \int d^{4} x e^{i q x}\langle 0| T\left\{\left(\bar{d}(0) \gamma_{\mu} \gamma_{5} u(0) j_{\nu}^{e m}(x)\right\}|\pi(p)\rangle\right.
$$

the form factor "embedded' in the dispersion relation

$$
T_{\mu \nu}(p, q)=2 i f_{\pi}(p-q)_{\mu} p_{\nu} F_{\pi}\left(Q^{2}\right) \frac{1}{m_{\pi}^{2}-(p-q)^{2}}+\int d s \frac{\rho_{\mu \nu}(s)}{s-(p-q)^{2}} .
$$

$O\left(\alpha_{s}\right)$ diagrams [V. Braun, M. Maul, A.K. (2000)]

OPE diagrams: (a) twist-4, (b,c,d) twist-6 contributions (twist 6 factorized into local condensate)

a)

b)

c)

d)

$F_{\pi}\left(Q^{2}\right)$ from LCSR

$$
\begin{gathered}
F_{\pi}\left(Q^{2}\right)=F_{\pi}^{(2)}\left(Q^{2}\right)+F_{\pi}^{\left(2, \alpha_{s}\right)}\left(Q^{2}\right)+F_{\pi}^{(4)}\left(Q^{2}\right)+F_{\pi}^{(6)}\left(Q^{2}\right), \\
F_{\pi}^{(2)}\left(Q^{2}\right)=\int_{u_{0}^{\pi}}^{1} d u \varphi_{\pi}(u, \mu) \exp \left(-\frac{\bar{u} Q^{2}}{u M^{2}}\right), \quad u_{0}^{\pi}=Q^{2} /\left(Q^{2}+s_{0}^{\pi}\right) \\
F_{\pi}^{\left(2, \alpha_{s}\right)}\left(Q^{2}\right)=\frac{\alpha_{s} C_{F}}{\pi} \int_{0}^{1} d u \varphi_{\pi}(u, \mu)\left[\Theta\left(u-u_{0}^{\pi}\right) \mathcal{F}_{\text {soft }}\left(u, M^{2}\right)+\Theta\left(u_{0}^{\pi}-u\right) \mathcal{F}_{\mathrm{hard}}\left(u, M^{2}\right)\right],
\end{gathered}
$$

- "hard" and "soft" contributions to $F_{\pi}\left(Q^{2}\right)$ identified as different terms of the OPE/LCSR
- rely on quark-hadron duality in the pion channel (s_{0}^{π} taken from QCD SR (SVZ) calculation of f_{π})
- the "hard" part of $F_{\pi}^{\left(2, \alpha_{s}\right)}\left(Q^{2}\right)$ contains the CZ-ER-BL asymptotic term with a correct normalization
- twist-4 part [Bijnens, A.K.(2002)] depends basically on one parameter $\delta_{\pi}^{2}=0.18 \pm 0.06 \mathrm{GeV}^{2}$, matrix element of a $\bar{q} q G$ operator, calculated with 2-point QCD SR [Ball,Braun,Lenz (2006) and earlier.]
- renormalon model of twist-4 part [Braun, Gardi, Gottwald(2004)], included in LCSR [Agaev(2005)]
- twist-6 factorized into quark condensate squared (a small correction !)

Hierarchy of twists in LCSR

-total
-twist-2 LO

- twist-4
- twist-2 $O\left(\alpha_{s}\right)$
-twist-6
from [A.K., J.Bijnens, (2002)], asymptotic pion DA's
in renormalon model twist-4 DA contribution slightly enhanced asympt. $<$ twist 4 contribution $<$ renorm.model

Interplay of Gegenbauer moments in LCSR for

$$
F_{\pi}\left(Q^{2}\right)
$$

-coeff. at a_{4}^{π}
-coeff. at a_{2}^{π}
-asympt.
from [A.K., J.Bijnens, (2002)], asymptotic pion DA's

new Jefferson Lab data on $F_{\pi}\left(Q^{2}\right)$

[T.Horn et al. nucl-ex/0607005; V. Tadevosyan et al. nucl-ex/0607007]

- Electroproduction of pions: $\gamma^{*} N \rightarrow \pi N$, new data allow a clean separation of $d \sigma_{L} / d t\left(Q^{2}, t\right)$ (contains F_{π} via pion exchange) and $d \sigma_{T} / d t\left(Q^{2}, t\right)$
- $Q_{\text {max }}^{2}=2.45 \mathrm{GeV}^{2}$ reached (old SLAC/Cornell data at even larger Q^{2} not reliable), data at lower Q^{2} update the older paper [Volmer et al.2000]
- form factor data model dependent ! (extraction of pion-exchange with an "antique" Regge model)

Fitting the new JLab data on $F_{\pi}\left(Q^{2}\right)$

$$
\begin{array}{lll}
\text { assuming } a_{n \leq 4}=0 & 0.8 \\
a_{2}^{\pi}(1 \mathrm{GeV})=0.16 \pm[0.03]_{M} \pm[0.03]_{\delta} & 0.7 \\
\text { preliminary ! } & & 0.6
\end{array}
$$

asymptotic DA,
assuming $a_{n \leq 4}^{\pi}=0$:
$a_{2}^{\pi}(1 \mathrm{GeV})=0.18$,
$a_{4}^{\pi}(1 \mathrm{GeV})=+0.04$
(central point, errors correlated) preliminary!

----- with fitted a_{2}^{π}, a_{4}^{π}
$-----\operatorname{BMS}(2006)$ "Best fit point" $\left(a_{2}^{\pi}=.44, a_{4}^{\pi}=-.40\right)$

Is $F_{\pi}\left(Q^{2}\right)$ at larger Q^{2} accessible ?

- Experiment: future CEBAF upgrade, promise $Q^{2} \sim 5-6 \mathrm{GeV}^{2}$
- analytic continuation from timelike region, need a reliable model of timelike data at large $s=-Q^{2}$

Example: an ansatz based on dual-resonance model, fitted to the timelike data (C. Bruch, A.K., J.Kühn (2005))
continuation $s \rightarrow=-Q^{2}$: at $Q^{2}>3 \mathrm{GeV}^{2}$ large uncertainties from the choice of resonance ansatz
 (Breit-Wigner,Gounaris-Sakurai etc.)

- more sophisticated but less model-dependent continuation:
dispersion bounds [Geshkenbein(2000)] :
relating $F_{\pi}\left(Q^{2}\right)$ with integrals over measured $\left|F_{\pi}(s)\right|^{2}$: still large uncert.
- a recent unexpectedly large $F_{\pi}(s)$ at $s=13.48 \mathrm{GeV}^{2}$ (measured by CLEOc slightly below $\psi(2 S)$ resonance)

$$
\left[s F_{\pi}(s)\right]_{s=13.48}=1.01 \pm 0.11 \pm 0.07 \mathrm{GeV}^{2}
$$

[T.K. Pedlar et al. (CLEO Collab.) hep-ex/0510005]
a typical LCSR prediction at $Q^{2}=13.48 \mathrm{GeV}^{2}$:

$$
\left[Q^{2} F_{\pi}\left(Q^{2}\right)\right]_{Q^{2}=13.48}=0.2-0.3 \mathrm{GeV}^{2}
$$

an indication that the onset of "true asymptotics" is even higher than expected ?

Extracting φ_{π} from $F_{\pi \gamma \gamma^{*}}\left(Q^{2}\right)$

- The LCSR relation for $F_{\pi \gamma \gamma^{*}}\left(Q^{2}\right)$, derived [A.K. (1998)]
from a very similar correlation function: $\gamma^{*} \gamma^{*} \rightarrow \pi^{0}$

$$
\int d^{4} x e^{-i q x}\left\langle\pi^{0}(p)\right| T\left\{j_{\mu}^{e m}(x) j_{\nu}^{e m}(0)\right\}|0\rangle=i \epsilon_{\mu \nu \alpha \beta} q^{\alpha} p^{\beta} F^{\gamma^{*} \pi}\left(Q^{2},(p-q)^{2}\right)
$$

at Q^{2} and $\left|(p-q)^{2}\right|$ sufficiently large, employ light-cone OPE in terms of the same diagrams $\left(\gamma_{\mu} \gamma_{5} \rightarrow \gamma_{\mu}\right)$

$$
F^{\pi \gamma^{*} \gamma^{*}}\left(Q^{2},(p-q)^{2}\right)=\frac{\sqrt{2} f_{\pi}}{3} \int_{0}^{1} \frac{d u \varphi_{\pi}(u)}{\bar{u} Q^{2}-u(p-q)^{2}}+O\left(\alpha_{s}\right)+O(\text { twist } 4)+\ldots
$$

twist-2 [Brodsky-Lepage(1979)]; $O\left(\alpha_{s}\right)$ [Braaten (1983)]; twist-4.

LCSR for $F_{\rho \pi \gamma^{*}}$

$$
F^{\rho \pi \gamma^{*}}\left(Q^{2}\right)=\frac{f_{\pi}}{3 f_{\rho}} \int_{u_{0}}^{1} \frac{d u}{u} \varphi_{\pi}(u) \exp \left(-\frac{Q^{2}(1-u)}{u M^{2}}+\frac{m_{\rho}^{2}}{M^{2}}\right)+O\left(\alpha_{s}\right)+O(\text { twist } 4)
$$

- this form factor is an independent object to use for φ_{π} extraction ($O\left(\alpha_{s}\right)$ has the same $1 / Q^{4}$ asymptotics as the soft part)
- $F^{\rho \pi \gamma^{*}}\left(Q^{2}\right)$ can be measured in $\gamma^{*} N \rightarrow \rho N$ (e.g., at JLab)
(pion exchange dominates at small t)
- Next step: dispersion relation for $F^{\pi \gamma^{*} \gamma^{*}}$ in $(p-q)^{2}$, with $F_{L C S R}^{\rho \pi \gamma^{*}}$ in the ρ - pole

$$
\begin{aligned}
& \text { term, using duality ansatz: } \\
& \qquad F^{\pi \gamma^{*} \gamma^{*}}\left(Q^{2},(p-q)^{2}\right)=\frac{\sqrt{2} f_{\rho} F_{L C S R}^{\rho \pi \gamma^{*}}\left(Q^{2}\right)}{m_{\rho}^{2}-(p-q)^{2}}+\frac{1}{\pi} \int_{s_{0}^{\rho}}^{\infty} d s \frac{\operatorname{Im} F^{\gamma^{*} \gamma^{*} \pi}\left(Q^{2}, s\right)}{s-(p-q)^{2}} .
\end{aligned}
$$

- finally: $(p-q)^{2} \rightarrow 0$ safely, i.e. $F^{\pi \gamma^{*} \gamma^{*}}\left(Q^{2},(p-q)^{2}\right) \rightarrow F^{\pi \gamma \gamma^{*}}\left(Q^{2}\right)$ this is not literally LCSR, but a dispersion relation, containing LCSR

LCSR vs CLEO data

data: [J.Gronberg et al., hep-ex/9707031] (essentially, V.Savinov)
from [A.K. Eur.Phys.J (1999)]

since then :
$Q^{2}\left[\mathrm{GeV}^{2}\right]$

- $O\left(\alpha_{s}\right)$, Im- part from Braaten's result [Schmedding, Yakovlev,(1999)]
a uniform decrease by $\sim 15 \%$ making room for nonasymptotic part
- fitting to CLEO data [Schmedding,Yakovlev(1999), Bakulev,Mikhailov,Stefanis(\leq 2006), Agaev (2006)] some improvements of the theoretical formula (tw4 renormmodel, NLO evolution)
- the LCSR relation mostly depends on the inverse moment:

$$
\int_{0}^{1} d u \frac{\varphi_{\pi}(u, \mu)}{1-u}=3 \sum_{n} a_{2 n}^{\pi}
$$

difficult to separate $a_{2,4, .}^{\pi}$

- the LCSR relation can be and has to be improved further: e.g., calculate the "twist 6 " term (factorized into $\langle\bar{q} q\rangle^{2}$)
- NNLO $O\left(\alpha_{s}^{2}\right)$ for both F_{π} and $F_{\pi \gamma \gamma^{*}}$ sum rules, a realistic task (with the help of experts in multiloop calculations),

Conclusions

* LCSR for $F_{\pi}\left(Q^{2}\right)$ fitted to new JLab measurement: -yields a_{2}^{π} in the ballpark of QCD SR and lattice QCD calculations, -indicates small a_{4}^{π},
* $F_{\rho \pi \gamma^{*}}\left(Q^{2}\right)$ deserves to be measured
* $F_{\pi \gamma \gamma^{*}}\left(Q^{2}\right)$, obtained from LCSR has a room for improvement: twist $6, O\left(\alpha_{s}\right)$ twist $4, O\left(\alpha_{s}^{2}\right)$ tw2
* an important experimental task: repeat CLEO measurements at $\mathrm{BaBar} / \mathrm{Belle}$;

Conclusions

* LCSR for $F_{\pi}\left(Q^{2}\right)$ fitted to new JLab measurement:
-yield a_{2}^{π} in the ballpark of QCD SR and lattice QCD calculations, -indicate small a_{4}^{π},
* $F_{\rho \pi \gamma^{*}}\left(Q^{2}\right)$ deserves to be measured
* $F_{\pi \gamma \gamma^{*}}\left(Q^{2}\right)$, obtained from LCSR has a room for improvement: twist $6, O\left(\alpha_{s}\right)$ twist $4, O\left(\alpha_{s}^{2}\right)$ tw2
* an important experimental task:
repeat CLEO measurements at BaBar/Belle;
THANKS TO PATRICIA and ROMAN!,
LOOKING FORWARD FOR INTERESTING TALKS

