Constraints on the twist-2 pion DA from the measurements of pion form factors

Alexander Khodjamirian (Uni. Siegen)

DA06: Workshop on Light-Cone Distribution Amplitudes, IPPP, Durham, 28.09.06

Pion distribution amplitude of twist 2

• Formal definition at $(x_2 - x_1)^2 \rightarrow 0$:

$$\langle 0|\bar{u}(x_2)[x_2,x_1]\gamma_{\mu}\gamma_5 d(x_1)|\pi^-(p)\rangle = if_{\pi}p_{\mu}\int_0^1 du e^{-iupx_1 - i\bar{u}px_2}\varphi_{\pi}(u,\mu) + twist4 + \dots$$

• Gegenbauer Expansion:

$$\varphi_{\pi}(u,\mu) = 6u\bar{u} \left[1 + \sum_{n=1}^{\infty} a_{2n}^{\pi}(\mu) C_{2n}^{3/2}(u-\bar{u}) \right],$$

The ongoing hunt for $a_{2n}^{\pi}(\mu_0)$, $\mu_0 \sim 1 \text{ GeV}$

Constraining Gegenbauer coefficients

• Form factors: $F_{\pi}(Q^2), F_{\pi\gamma\gamma*}(Q^2), f^+_{B\pi}(q^2), ...,$ provided there is factorization

$$F(Q^2) = \int du \ T_{hard}(Q^2, u, \mu) \varphi_{\pi}(u, \mu) + \{ \operatorname{tw} 4, 6, \dots \sim [1/Q^2]^k \}$$

*calculate T_{hard} , incl. $O(\alpha_s)$, $O(\alpha_s^2)$ *estimate tw 4,6,..., are they small enough ? *measure the form factor at large enough Q^2 * obtain intervals of $a_{2,4,..}^{\pi}$ depending on the adopted model/ansatz for $\varphi_{\pi}(u, \mu)$

 \Rightarrow Pion form factors yield constraints in the "space" of a_{2n}^{π}

How many Gegenbauer coeffs contribute?

one:
$$\varphi_{\pi}(u,\mu) = 6u(1-u)[1+a_2(\mu)C_2^{3/2}(2u-1)]$$

How many Gegenbauer coeffs contribute?

one:
$$\varphi_{\pi}(u,\mu) = 6u(1-u)[1+a_2(\mu)C_2^{3/2}(2u-1)]$$

or maybe a few:
$$\varphi_{\pi}(u,\mu) = 6u(1-u)[1+a_2(\mu)...+a_4(\mu)...+a_6(\mu)...]$$

or infinitely many ? $a_2^{\pi}, ..., a_{1000}^{\pi}, ...$

• a recent model of *n*-behavior of a_{2n} , inspired by conformal expansion and asymptotics [Ball-Talbot, 2005]

Calculating Gegenbauer coefficients

- QCD sum rules for $a_{2n}^{\pi}(\mu_0) \sim \langle 0|O_{2n}^{tw\,2}|\pi\rangle|_{\mu_0}$ from $\langle 0|T\{O_{2n}^{tw\,2}(x)j_{\pi}(0)\}|0\rangle$, [Chernyak-Zhitnisky (1984)]
 - only a_2^{π} accessible within the standard (SVZ) local condensate OPE;
 - models of nonlocal condensates, [Mikhailov,Radyushkin(1986)] yield a_{2n}^{π} at n > 2, predict $a_{2n} \to 0$ at large n
 - recent "improved NLC" [Bakulev, Pimikov(2006)]
- lattice QCD: recent encouraging results on a_2^{π} , are $a_{4,6,..}^{\pi}$ accessible?
- to complete the list: "instanton liquid" models

•

A compilation of recent results

· · · · · · · · · · · · · · · · · · ·				
Method	$a_2^{\pi}(1 { m GeV})$	$a_4^{\pi}(1 { m GeV})$	Details	Ref.
F_{π} , LCSR	0.24 ± 0.14	-	assump. $a_4 = 0$	Bijnens, A.K.
\oplus old Jlab data	± 0.08			(2002)
F_{π} , LCSR	0.2 ± 0.03	-0.03 ± 0.06	R -model tw.4	Agaev(2005)
\oplus old Jlab, SLAC data				
$F_{\pi\gamma\gamma^*}, \text{LCSR}$	0.31	-0.35	central points	Bakulev,Mikhailov,
\oplus CLEO data	0.44	-0.40	R -model tw.4	Stefanis[BMS](2006)
$F_{\pi\gamma\gamma^*}, \text{LCSR}$	$0.27(\pm 0.10)$	$-0.3~(\pm 0.2)$	uncert. correl.	Agaev(2006)
\oplus CLEO data			R-model tw.4	
$f_{B\pi}, LCSR$	0.19 ± 0.19	≥ -0.07	$\frac{d\Gamma(B \to \pi l \nu_l)}{dq^2}$	Ball, Zwicky(2005)
QCD SR	$0.26^{+.21}_{09}$	-		A.K.,Mannel,
				Melcher (2004)
	$0.28 {\pm} 0.08$	-		Ball, Braun, Lenz(2006)
QCDSR,NLC	0.19 ± 0.06	-0.13 ± 0.09	$a_{n>4}$ small	BMS (2005)
Lattice	0.34 ± 0.21	-		L. Del Debbio [UKQCD
(quench.)	(from[BMS])			talk at LC 2004
Lattice	0.27 ± 0.15	-	$a_2^{\pi}(2 \text{GeV}) =$	QCDF/UKQCD
$(n_f = 2)$	(LO evol.)		$= .201 \pm .114$	Braun et al. (2006)

Pion e.m. form factor

"hard", factoriz.

"soft", nonfact.

The QCD asymptotics:

$$F_{\pi}(Q^2)^{asympt} = \frac{8\pi\alpha_s f_{\pi}^2}{9Q^2} \left(\int_0^1 du \frac{\varphi_{\pi}(u,\mu)}{\bar{u}} \right)^2 \bigg|_{\mu \sim Q},$$

[Chernyak, Zhitnisky; Efremov, Radyushkin; Brodsky-Lepage (1977-1980)]

The form factor contains important (and even dominant !) nonasymptotic part at $Q^2 \leq 10 \text{ GeV}^2$ (at least):

 $F_{\pi}(Q^2) = F_{\pi}(Q^2)^{asympt} + F_{\pi}(Q^2)^{nonas} = F_{\pi}(Q^2)^{hard} + F_{\pi}(Q^2)^{soft}$

- combining $F_{\pi}(Q^2)^{hard}$ from PQCD and a model for $F_{\pi}(Q^2)^{soft}$?
- is QCD calculation of $F_{\pi}(Q^2)^{soft}$ possible?

a realistic solution : QCD light-cone sum rules

[V. Braun, I. Halperin (1999), V. Braun, M. Maul, A.K. (2000)]

$$T_{\mu\nu}(p,q) = i \int d^4x \, e^{iqx} \langle 0|T\{ \left(\bar{d}(0)\gamma_{\mu}\gamma_5 u(0)j_{\nu}^{em}(x) \right\} |\pi(p)\rangle \,,$$

the form factor "embedded' in the dispersion relation

$$T_{\mu\nu}(p,q) = 2if_{\pi}(p-q)_{\mu}p_{\nu}F_{\pi}(Q^2)\frac{1}{m_{\pi}^2 - (p-q)^2} + \int ds \,\frac{\rho_{\mu\nu}(s)}{s - (p-q)^2} \,.$$

 $O(\alpha_s)$ diagrams [V. Braun, M. Maul, A.K. (2000)]

OPE diagrams: (a) twist-4, (b,c,d) twist-6 contributions (twist 6 factorized into local condensate)

$F_{\pi}(Q^2)$ from LCSR

$$\begin{split} F_{\pi}(Q^2) &= F_{\pi}^{(2)}(Q^2) + F_{\pi}^{(2,\alpha_s)}(Q^2) + F_{\pi}^{(4)}(Q^2) + F_{\pi}^{(6)}(Q^2) \,, \\ F_{\pi}^{(2)}(Q^2) &= \int_{u_0^{\pi}}^{1} du \, \varphi_{\pi}(u,\mu) \exp\left(-\frac{\bar{u}Q^2}{uM^2}\right) \,, \quad u_0^{\pi} = Q^2/(Q^2 + s_0^{\pi}) \\ F_{\pi}^{(2,\alpha_s)}(Q^2) &= \frac{\alpha_s C_F}{\pi} \int_0^1 du \varphi_{\pi}(u,\mu) \left[\Theta(u - u_0^{\pi})\mathcal{F}_{\text{soft}}(u,M^2) + \Theta(u_0^{\pi} - u)\mathcal{F}_{\text{hard}}(u,M^2)\right], \end{split}$$

 \bullet "hard" and "soft" contributions to $F_\pi(Q^2)$ identified as different terms of the OPE/LCSR

• rely on quark-hadron duality in the pion channel $(s_0^{\pi} \text{ taken from QCD SR (SVZ) calculation of } f_{\pi})$

• the "hard" part of $F_{\pi}^{(2,\alpha_s)}(Q^2)$ contains the CZ-ER-BL asymptotic term with a correct normalization

• twist-4 part [Bijnens, A.K.(2002)] depends basically on one parameter $\delta_{\pi}^2 = 0.18 \pm 0.06 \text{ GeV}^2$, matrix element of a $\bar{q}qG$ operator, calculated with 2-point QCD SR [Ball,Braun,Lenz (2006) and earlier.]

 \bullet renormalon model of twist-4 part [Braun, Gardi, Gottwald(2004)], included in LCSR [Agaev(2005)]

• twist-6 factorized into quark condensate squared (a small correction !)

Hierarchy of twists in LCSR

from [A.K., J.Bijnens, (2002)], asymptotic pion DA's

in renormalon model twist-4 DA contribution slightly enhanced asympt.< twist 4 contribution < renorm.model

Interplay of Gegenbauer moments in LCSR for $F_{\pi}(Q^2)$

-coeff. at a_4^{π} -coeff. at a_2^{π} -asympt.

from [A.K., J.Bijnens, (2002)], asymptotic pion DA's

new Jefferson Lab data on $F_{\pi}(Q^2)$

[T.Horn et al. nucl-ex/0607005; V. Tadevosyan et al. nucl-ex/0607007]

• Electroproduction of pions: $\gamma^* N \to \pi N$, new data allow a clean separation of $d\sigma_L/dt(Q^2, t)$ (contains F_{π} via pion exchange) and $d\sigma_T/dt(Q^2, t)$

• $Q_{max}^2 = 2.45 \text{ GeV}^2$ reached (old SLAC/Cornell data at even larger Q^2 not reliable), data at lower Q^2 update the older paper [Volmer et al.2000]

• form factor data model dependent ! (extraction of pion-exchange with an "antique" Regge model)

Fitting the new JLab data on $F_{\pi}(Q^2)$

assuming $a_{n\leq 4}^{\pi} = 0$: $a_2^{\pi}(1 \text{GeV}) = 0.18$, $a_4^{\pi}(1 \text{GeV}) = +0.04$ (central point, errors correlated) preliminary !

---- with fitted a_2^{π} , a_4^{π} ---- BMS(2006) "Best fit point" ($a_2^{\pi} = .44, a_4^{\pi} = -.40$)

Is $F_{\pi}(Q^2)$ at larger Q^2 accessible ?

• Experiment: future CEBAF upgrade, promise $Q^2 \sim 5 - 6 \text{ GeV}^2$

• analytic continuation from timelike region, need a reliable model of timelike data at large $s = -Q^2$

Example: an ansatz based on dual-resonance model, fitted to the timelike data (C. Bruch, A.K., J.Kühn (2005))

continuation $s \rightarrow = -Q^2$: at $Q^2 > 3 \text{ GeV}^2$ large uncertainties from the choice of resonance ansatz (Breit-Wigner,Gounaris-Sakurai etc.)

• more sophisticated but less model-dependent continuation: dispersion bounds [Geshkenbein(2000)] : relating $F_{\pi}(Q^2)$ with integrals over measured $|F_{\pi}(s)|^2$: still large uncert.

• a recent unexpectedly large $F_{\pi}(s)$ at $s = 13.48 \text{ GeV}^2$ (measured by CLEOc slightly below $\psi(2S)$ resonance)

 $[sF_{\pi}(s)]_{s=13.48} = 1.01 \pm 0.11 \pm 0.07 \text{GeV}^2$

[T.K. Pedlar et al. (CLEO Collab.) hep-ex/0510005]

a typical LCSR prediction at $Q^2 = 13.48 \text{ GeV}^2$:

$$[Q^2 F_{\pi}(Q^2)]_{Q^2=13.48} = 0.2 - 0.3 \text{ GeV}^2$$

an indication that the onset of "true asymptotics" is even higher than expected ?

Extracting φ_{π} from $F_{\pi\gamma\gamma^*}(Q^2)$

• The LCSR relation for $F_{\pi\gamma\gamma^*}(Q^2)$, derived [A.K. (1998)] from a very similar correlation function: $\gamma^*\gamma^* \to \pi^0$

$$\int d^4x e^{-iqx} \langle \pi^0(p) | T\{j^{em}_{\mu}(x)j^{em}_{\nu}(0)\} | 0 \rangle = i\epsilon_{\mu\nu\alpha\beta} q^{\alpha} p^{\beta} F^{\gamma^*\pi}(Q^2, (p-q)^2).$$

at Q^2 and $|(p-q)^2|$ sufficiently large, employ light-cone OPE in terms of the same diagrams $(\gamma_{\mu}\gamma_5 \rightarrow \gamma_{\mu})$

$$F^{\pi\gamma^*\gamma^*}(Q^2, (p-q)^2) = \frac{\sqrt{2}f_\pi}{3} \int_0^1 \frac{du \,\varphi_\pi(u)}{\bar{u}Q^2 - u(p-q)^2} + O(\alpha_s) + O(twist4) + \dots$$

twist-2 [Brodsky-Lepage(1979)]; $O(\alpha_s)$ [Braaten (1983)]; twist-4.

LCSR for $F_{\rho\pi\gamma^*}$

$$F^{\rho\pi\gamma^*}(Q^2) = \frac{f_\pi}{3f_\rho} \int_{u_0}^1 \frac{du}{u} \varphi_\pi(u) \exp\left(-\frac{Q^2(1-u)}{uM^2} + \frac{m_\rho^2}{M^2}\right) + O(\alpha_s) + O(\text{twist } 4)$$

• this form factor is an independent object to use for φ_{π} extraction $(O(\alpha_s)$ has the same $1/Q^4$ asymptotics as the soft part)

• $F^{\rho\pi\gamma^*}(Q^2)$ can be measured in $\gamma^*N \to \rho N$ (e.g., at JLab) (pion exchange dominates at small t)

• Next step: dispersion relation for $F^{\pi\gamma^*\gamma^*}$ in $(p-q)^2$, with $F_{LCSR}^{\rho\pi\gamma^*}$ in the ρ - pole term, using duality ansatz: $F^{\pi\gamma^*\gamma^*}(Q^2, (p-q)^2) = \frac{\sqrt{2}f_{\rho}F_{LCSR}^{\rho\pi\gamma^*}(Q^2)}{m_{\rho}^2 - (p-q)^2} + \frac{1}{\pi}\int_{s_0^{\rho}}^{\infty} ds \; \frac{\mathrm{Im}F^{\gamma^*\gamma^*\pi}(Q^2, s)}{s - (p-q)^2}.$

• finally: $(p-q)^2 \to 0$ safely, i.e. $F^{\pi\gamma^*\gamma^*}(Q^2, (p-q)^2) \to F^{\pi\gamma\gamma^*}(Q^2)$ this is not literally LCSR, but a dispersion relation, containing LCSR

LCSR vs CLEO data

a uniform decrease by $\sim 15\%$ making room for nonasymptotic part

• fitting to CLEO data [Schmedding, Yakovlev(1999), Bakulev, Mikhailov, Stefanis(≤ 2006), Agaev (2006)] some improvements of the theoretical formula (tw4 renorm-model, NLO evolution)

• the LCSR relation mostly depends on the inverse moment:

$$\int_{0}^{1} du \frac{\varphi_{\pi}(u,\mu)}{1-u} = 3\sum_{n} a_{2n}^{\pi}$$

difficult to separate $a_{2,4,..}^{\pi}$

• the LCSR relation can be and has to be improved further: e.g., calculate the "twist 6" term (factorized into $\langle \bar{q}q \rangle^2$)

• NNLO $O(\alpha_s^2)$ for both F_{π} and $F_{\pi\gamma\gamma^*}$ sum rules, a realistic task (with the help of experts in multiloop calculations),

Conclusions

* LCSR for $F_{\pi}(Q^2)$ fitted to new JLab measurement: -yields a_2^{π} in the ballpark of QCD SR and lattice QCD calculations, -indicates small a_4^{π} ,

* $F_{\rho\pi\gamma^*}(Q^2)$ deserves to be measured

* $F_{\pi\gamma\gamma^*}(Q^2)$, obtained from LCSR has a room for improvement: twist 6, $O(\alpha_s)$ twist 4, $O(\alpha_s^2)$ tw2

* an important experimental task: repeat CLEO measurements at BaBar/Belle;

Conclusions

* LCSR for $F_{\pi}(Q^2)$ fitted to new JLab measurement: -yield a_2^{π} in the ballpark of QCD SR and lattice QCD calculations, -indicate small a_4^{π} ,

* $F_{\rho\pi\gamma^*}(Q^2)$ deserves to be measured

* $F_{\pi\gamma\gamma^*}(Q^2)$, obtained from LCSR has a room for improvement: twist 6, $O(\alpha_s)$ twist 4, $O(\alpha_s^2)$ tw2

* an important experimental task: repeat CLEO measurements at BaBar/Belle;

THANKS TO PATRICIA and ROMAN !,

LOOKING FORWARD FOR INTERESTING TALKS