Moments of Meson Distribution Amplitudes from the lattice with $N_f = 2 + 1$ Domain Wall Fermions

DA06: Workshop on Light-Cone Distribution Amplitudes

Andreas Jüttner UKQCD

School of Physics & Astronomy University of Southampton

September 28, 2006

Project description

Plan:

UKQCD project for the computation of Meson DA's using lattice QCD

- 1st moments a_1^K , $a_1^{K^*}$
- 2nd moments a_2^{π} , a_2^{K} , a_2^{ρ} , $a_2^{K^*}$

Status:

- *a*^{*K*}₁ (Phys. Lett. B 641, 67-74, 2006)
- preliminary results for a_2^{π} , a_2^{κ}

People:

Southampton Michael Donellan Jonathan Flynn Andreas Jüttner Jun-Ichi Noaki Chris Sachrajda

Edinburgh Peter Boyle Robert Tweedie

Outline

- Definitions; Lattice essentials and systematics
 Further details already in Wolfram Schrör's talk (NPR, chiral extrapolation)
- Previous studies and comparison of UKQCD/QCDSF UKQCD
- UKQCD-project details
- Results

Definitions

$$\langle 0|\bar{q}(z)\gamma_{\mu}\gamma_{5}\mathcal{U}(z,-z)s(-z)|K(p)\rangle = if_{K}p_{\mu}\int_{0}^{1}due^{i(2u-1)pz}\phi_{K}(u,\mu)$$

• Expand around the light cone
$$z^2 \to 0$$
:
1st order: $\langle 0 | \overline{\hat{q}(0)\gamma_{\mu}\gamma_{5}} \overset{\leftrightarrow}{D}_{\nu} s(0) | K(p) \rangle = f_{K}(ip_{\mu})(ip_{\nu}) \int_{0}^{1} du(2u-1)\phi_{K}(u,\mu)$
2nd order: $\langle 0 | \overline{\hat{q}(0)\gamma_{\mu}\gamma_{5}} \overset{\leftrightarrow}{D}_{\nu} \overset{\leftrightarrow}{D}_{\rho} s(0) | K(p) \rangle = f_{K}(ip_{\mu})(ip_{\nu})(ip_{\nu}) \int_{0}^{1} du(2u-1)^{2}\phi_{K}(u,\mu)$
2nd moment: $\langle \xi^{2} \rangle_{K}$

re-construct DA from Gegenbauer momenta:

$$\phi(u,\mu) = 6u\bar{u}\left(1 + \sum_{n\geq 1} \frac{a_n(\mu)C_n^{3/2}(2u-1)}{a_n(\mu)C_n^{3/2}(2u-1)}\right) \quad \text{where} \quad \begin{array}{l} a_1 = \frac{5}{3}\langle \xi \rangle, \\ a_2 = \frac{7}{12}\left(5\langle \xi^2 \rangle - 1\right)... \end{array}$$

- a_n have a single anomalous dimension, positive, increasing with n

Lattice QCD

• Matrix elements in terms of Euclidean QCD Path-integral

 $\langle O[\bar{\psi},\psi,A]\rangle = \frac{1}{Z}\int D\bar{\psi}D\psi DAO(\bar{\psi},\psi,A)\,e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$

- discretisation \rightarrow Euclidean space time lattice \rightarrow regulator 1/a
- calculate integral by Monte Carlo method (statistical sampling)
- errors systematically improvable
- from first principles: tune coupling and quark mass and compute many quantities

Lattice QCD

• Matrix elements in terms of Euclidean QCD Path-integral

 $\langle O[\bar{\psi},\psi,A]\rangle = \frac{1}{Z} \int D\bar{\psi}D\psi DAO(\bar{\psi},\psi,A) \, e^{-S_G(U) - S_q(\bar{\psi},\psi,U)}$

• discretisation \rightarrow Euclidean space time lattice \rightarrow regulator 1/a

no unique discretisation:	Glue:	Fermions:
	Wilson,	Wilson,
	IWASAKI,	DWF,

- calculate integral by Monte Carlo method (statistical sampling)
- errors systematically improvable
- from first principles: tune coupling and quark mass and compute many quantities

Lattice QCD

• Matrix elements in terms of Euclidean QCD Path-integral

 $\langle O[\bar{\psi},\psi,A]\rangle = \frac{1}{Z} \int D\bar{\psi}D\psi DAO(\bar{\psi},\psi,A) e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$

- discretisation \rightarrow Euclidean space time lattice \rightarrow regulator 1/a
- calculate integral by Monte Carlo method (statistical sampling)

QCDOC-computer by UKQCD/RBC

- errors systematically improvable
- from first principles: tune coupling and quark mass and compute many quantities

Lattice QCD

• Matrix elements in terms of Euclidean QCD Path-integral

 $\langle O[\bar{\psi},\psi,A]\rangle = \frac{1}{Z} \int D\bar{\psi}D\psi DA O(\bar{\psi},\psi,A) \, e^{-S_G(U) - S_q(\bar{\psi},\psi,U)}$

- discretisation \rightarrow Euclidean space time lattice \rightarrow regulator 1/a
- calculate integral by Monte Carlo method (statistical sampling)

errors systematically improvable

• from first principles: tune coupling and quark mass and compute many quantities

Lattice QCD

• Matrix elements in terms of Euclidean QCD Path-integral

 $\langle O[\bar{\psi},\psi,A]\rangle = \frac{1}{Z} \int D\bar{\psi}D\psi DA O(\bar{\psi},\psi,A) \, e^{-S_G(U) - S_q(\bar{\psi},\psi,U)}$

- discretisation \rightarrow Euclidean space time lattice \rightarrow regulator 1/a
- calculate integral by Monte Carlo method (statistical sampling)
- errors systematically improvable
- from first principles: tune coupling and quark mass and compute many quantities

Lattice QCD

Matrix elements in terms of Euclidean QCD Path-integral

 $\langle O[\bar{\psi},\psi,A]\rangle = \frac{1}{z} \int D\bar{\psi}D\psi DAO(\bar{\psi},\psi,A) \, e^{-S_G(U) - S_q(\bar{\psi},\psi,U)}$

- discretisation \rightarrow Euclidean space time lattice \rightarrow regulator 1/a
- calculate integral by Monte Carlo method (statistical sampling)
- errors systematically improvable
- from first principles: tune coupling and quark mass and compute many quantities

statistical

- quenched / partially quenched / full QCD
- discretisation errors (cut-off effects)
- finite volume errors
- extrapolation in the light physical quark mass
- (non-)perturbative renormalisation

- statistical
- quenched / partially quenched / full QCD

quenched QCD

full QCD

partially quenched:

- different masses for sea and valence quarks
- e.g. 2 dynamical + 1 quenched fermions

Nowadays $N_f = 2$, 2 + 1 ('full QCD') standard

- discretisation errors (cut-off effects)
- finite volume errors
- extrapolation in the light physical quark mass
- (non-)perturbative renormalisation

13%

1.5%

 $O(a\Lambda_{\rm QCD})$ $O(a^2\Lambda_{\rm QCD}^2)$

Systematic reduction of errors

- statistical
- quenched / partially quenched / full QCD
- discretisation errors (cut-off effects)
 - $a \approx 0.1 fm \rightarrow 1/a \approx 2 GeV$

naive estimate of cut-off effects

- O(a)-improvement
- chirally symmetric action automatically O(a)-improved
- continuum extrapolation
- finite volume errors
- extrapolation in the light physical quark mass
- (non-)perturbative renormalisation

13%

1.5%

 $O(a\Lambda_{\rm QCD})$ $O(a^2\Lambda_{\rm QCD}^2)$

Systematic reduction of errors

- statistical
- quenched / partially quenched / full QCD
- discretisation errors (cut-off effects)
 - $a \approx 0.1 fm \rightarrow 1/a \approx 2 GeV$

naive estimate of cut-off effects

- O(a)-improvement
- chirally symmetric action automatically O(a)-improved
- continuum extrapolation
- finite volume errors
- extrapolation in the light physical quark mass
- (non-)perturbative renormalisation

- statistical
- quenched / partially quenched / full QCD
- discretisation errors (cut-off effects)
- finite volume errors

lattice-box $\approx 2 \text{fm}$

• problems for light hadrons ($m_{\pi}L > 3$)

• extrapolation in the light physical quark mass

• (non-)perturbative renormalisation

- statistical
- quenched / partially quenched / full QCD
- discretisation errors (cut-off effects)
- finite volume errors
- extrapolation in the light physical quark mass
- (non-)perturbative renormalisation

- statistical
- quenched / partially quenched / full QCD
- discretisation errors (cut-off effects)
- finite volume errors
- extrapolation in the light physical quark mass
- (non-)perturbative renormalisation

History of lattice results on distribution amplitudes

- 1985 A.S. Kronfeld and D.M. Photiadis
- 1986 S. Gottlieb and A.S. Kronfeld
- 1987 G. Martinelli and C.T. Sachrajda
- 1988 T.A. DeGrand and R.D. Loft
- 1991 D. Daniel, R. Gupta and D.G. Richards
- 2000 L. Del Debbio, M. Di Pierro, A. Dougall and C.T. Sachrajda

- lattice operators
- a_2^{π} , pert. subtraction
- a_2^{π} , non-pt. subtraction
- a_2^{π} , check the latter two
- a_2^{π} , dynamical
- a_2^{π} , quenched

2006	QCDSF/UKQCD	a_1^K, a_2^{π}, a_2^K
2006	UKQCD	$a_1^K (a_2^{\pi}, a_2^K)$

UKQCD/QCDSD - UKQCD

Comparison of major features of the UKQCD/QCDSF and UKQCD computations for a_1^K , a_2^π , a_2^K

	UKQCD/QCDSF	UKQCD
gluon action	Wilson	IWASAKI
fermion action	improved Wilson	Domain Wall
cut-off	1.6GeV-2.6GeV	1.6GeV
scaling study	yes ^π /no ^κ	not yet
volume	1.5-2.2fm	1.9/2.9fm
pion mass	> 600MeV	> 400MeV
unitarity	unitary $^{\pi}$ partial quenching $^{\kappa}$	unitary
renormalisation	non-perturbative	perturbative

UKQCD/QCDSD - UKQCD

Comparison of major features of the UKQCD/QCDSF and UKQCD computations for a_1^K , a_2^π , a_2^K

	UKQCD/QCDSF	UKQCD
gluon action	Wilson	IWASAKI
fermion action	improved Wilson	Domain Wall
cut-off	1.6GeV-2.6GeV	1.6GeV
scaling study	yes ^π /no ^κ	not yet
volume	1.5-2.2fm	1.9/2.9fm
pion mass	> 600MeV	> 400MeV
unitarity	unitary ^{π} partial quenching ^{κ}	unitary
renormalisation	non-perturbative	perturbative

Domain Wall Fermions

Discretisation of fermion action - free case:

 $\partial_{\mu}\psi(x) = \frac{1}{a} \left(\psi(x + a\hat{\mu}) - \psi(x) \right) \qquad \partial_{\mu}^{*}\psi(x) = \frac{1}{a} \left(\psi(x) - \psi(x - a\hat{\mu}) \right)$ Naive $D = \frac{1}{2} \left\{ \gamma_{\mu}(\partial_{\mu}^{*} + \partial_{\mu}) \right\} \qquad 16$ 'doublers' at $\frac{1}{a}sin(ap_{\mu})$ Wilson $D = \frac{1}{2} \left\{ \gamma_{\mu}(\partial_{\mu}^{*} + \partial_{\mu}) - a\partial_{\mu}^{*}\partial_{\mu} \right\} \qquad$ doublers get mass $\propto a^{-1}$ one physical fermion chiral symmetry broken

Domain Wall Fermions

Discretisation of fermion action - free case:

 $\partial_{\mu}\psi(\mathbf{x}) = \frac{1}{a}\left(\psi(\mathbf{x} + \mathbf{a}\hat{\mu}) - \psi(\mathbf{x})\right) \qquad \partial_{\mu}^{*}\psi(\mathbf{x}) = \frac{1}{a}\left(\psi(\mathbf{x}) - \psi(\mathbf{x} - \mathbf{a}\hat{\mu})\right)$

Naive $D = \frac{1}{2} \left\{ \gamma_{\mu} (\partial_{\mu}^* + \partial_{\mu}) \right\}$

Wilson $D = \frac{1}{2} \left\{ \gamma_{\mu} (\partial_{\mu}^* + \partial_{\mu}) - a \partial_{\mu}^* \partial_{\mu} \right\}$

16 'doublers' at $\frac{1}{a}sin(ap_{\mu})$

doublers get mass $\propto a^{-1}$ one physical fermion chiral symmetry broken

Domain Wall Fermions (by Kaplan, very nice in Lüscher's hep-lat/0102028):

- five dimensional formulation
- tower of fermions with mass $\approx a^{-1}$
- one physical massless mode localised on domain wall with definite chirality

Domain Wall Fermions

Discretisation of fermion action - free case:

 $\partial_{\mu}\psi(x) = \frac{1}{a}\left(\psi(x+a\hat{\mu})-\psi(x)\right) \qquad \partial_{\mu}^{*}\psi(x) = \frac{1}{a}\left(\psi(x)-\psi(x-a\hat{\mu})\right)$

Naive $D = \frac{1}{2} \left\{ \gamma_{\mu} (\partial_{\mu}^* + \partial_{\mu}) \right\}$

Wilson $D = \frac{1}{2} \left\{ \gamma_{\mu} (\partial_{\mu}^* + \partial_{\mu}) - a \partial_{\mu}^* \partial_{\mu} \right\}$ doublers get mass $\propto a^{-1}$

16 'doublers' at $\frac{1}{a} sin(ap_{\mu})$

doublers get mass $\propto a^{-1}$ one physical fermion chiral symmetry broken

Domain Wall Fermions (by Kaplan, very nice in Lüscher's hep-lat/0102028):

- five dimensional formulation
- tower of fermions with mass $\approx a^{-1}$
- one physical massless mode localised on domain wall with definite chirality

Pro/Contra:

- + (approximate) chiral symmetry on the lattice
- + no unphysical operator mixing (renormalisation)
- + automatic O(a)-improvement (reduced cut-off effects)
- expensive

UKQCD Simulation

We consider

 $O_{\{\mu\nu\}} \quad \text{with} \quad \mu \neq \nu \qquad \text{at} \ |\vec{p}| = 2\pi/L \qquad \rightarrow \langle \xi \rangle$

 $O_{\mu\nu\rho}$ with $\mu \neq \nu \neq \rho$ at $|\vec{p}| = \sqrt{2} 2\pi/L \rightarrow \langle \xi^2 \rangle$

Lattice parameters

1

$V_f = 2 + 1 DW$	/F, IWASAKI gauge action generated	by
F	RBC/UKQCD-collaboration	

$(L/a)^3 \times (T/a) \times L_s$	$16^3 \times 32 \times 16$ $24^3 \times 64 \times 16$
a ⁻¹	1.6 GeV
L	1.9/2.9 fm
ams	0.04
amı	0.03/0.02/0.01

Remainder:

- Perturbative renormalisation (NPR under way)
- Bare results
- Comparison, summary and outlook

6002

Perturbative Renormalisation

Perturbative Renormalisation

compare 1-loop amputated Green's function with desired operator inserted in both schemes (lattice and $\overline{\rm MS})$

for the 1st moment:

operator
$$O_{\mu\nu}^{5}$$
 (\rightarrow V):

Perturbative Renormalisation

$$\begin{aligned} \text{Matching condition: } O_{\rho\mu}^{\overline{\text{MS}}}(\mu) &= Z_{O_{\rho\mu}} O_{\rho\mu}^{\text{latt}}(a) \\ Z_{O_{\rho\mu}} &= \frac{1}{(1-w_0^2)Z_w} \left[1 + \frac{g^2 C_{\text{F}}}{16\pi^2} \left(-\frac{8}{3} \ln(\mu^2 a^2) + \Sigma_1^{\overline{\text{MS}}} - \Sigma_1 + V^{\overline{\text{MS}}} - V \right) \right] \end{aligned}$$

• Σ and V are contributions from wave-function and vertex graphs, resp.

Result:
$$Z_{O_{\rho\mu}} = \frac{1}{0.9082} \left[1 - \frac{g^2 C_F}{16\pi^2} 5.2509 \right] \left[1 + \frac{g^2 C_F}{16\pi^2} \left(-\frac{8}{3} \ln(\mu^2 a^2) - 0.6713 \right) \right]$$

• for this project divide by Z_A since we want to renormalise

dependent on renormalised coupling

$$\frac{Z_{O_{\mu\nu}}}{Z_A}(1.6 \text{GeV}) = 1.28 \pm 0.05$$

Remainder:

- Perturbative renormalisation
- Bare results
- Comparison, summary and outlook

Bare lattice correlation functions

Time dependence of correlation functions (e.g. 2pt function):

$$\langle O_{\rho\mu}(t) P^{\dagger}(0) \rangle = \sum_{n=1}^{\infty} \langle 0 | O_{\rho\mu} | n \rangle \langle n | P^{\dagger} | 0 \rangle e^{-E_n t}$$

$$\stackrel{t \to \infty}{=} \langle 0 | O_{\rho\mu} | 1 \rangle \langle 1 | P^{\dagger} | 0 \rangle e^{-m_0 t}$$

Cancel time-dependence and correlation effects; e.g. 1st moment $\langle \xi \rangle$:

$$\frac{\sum_{\vec{x}} e^{j\vec{p}\vec{x}} \langle O_{\rho\mu}^{5}(x) P^{\dagger}(0) \rangle}{\sum_{\vec{x}} e^{j\vec{p}\vec{x}} \langle A_{\nu}(x) P^{\dagger}(0) \rangle} \quad \stackrel{t \to \infty}{=} \quad \frac{\langle ip_{\rho})(ip_{\mu})}{ip_{\nu}} \langle \xi \rangle$$

Bare results - χ extrapolation

$$\langle \xi \rangle_{\kappa}^{\text{bare}} = 0.0262(23)$$

Chen and Stewart (2004) studied the mass behaviour in χ PT.

At lowest non trivial order: $\langle \xi \rangle_{\mathcal{K}} \propto (m_s + m_q)$ (no logs).

- \rightarrow Our result shows clear signs of partonic SU(3)-breaking effects
- \rightarrow extrapolation is compatible with iso-spin symmetry ($\langle \xi \rangle_{\pi} = 0$)

Bare results - $\langle \xi^2 \rangle_{\mathcal{K}}$ - PRELIMINARY

 $16^3 \times 32 \times 16$, $am_{u,d} = 0.03$; 0.02; 0.01, $am_s = 0.04$, 300 measurements/source, 2, 4 and 4 pos. of the source

 $\langle \xi^2 \rangle_{\kappa}^{\text{bare}} = 0.153(14); 0.157(15); 0.164(8)$ $\langle \xi^2 \rangle_{\pi}^{\text{bare}} = 0.160(11); 0.165(11); 0.187(6)$

Bare results - χ extrapolation - PRELIMINARY

Remainder:

- perturbative renormalisation
- Bare results
- Finite volume effects
- Final results, comparison, summary and outlook

Remainder:

- perturbative renormalisation
- Bare results
- Finite volume effects
- Final results, comparison, summary and outlook

Final result ($16^3 \times 32 \times 16$ only)

$$a_1^K(2\text{GeV})|_{\overline{\text{MS}}} = \frac{Z_{O_{\mu\nu}}}{Z_A}(2\text{GeV}) \times \frac{5}{3} \langle \xi \rangle_K^{\text{bare}} = 0.055(5)$$

PRELIMINARY (contribution from mixing neglected):

$$a_{2}^{K}(2\text{GeV})|_{\overline{\text{MS}}} = \frac{Z_{O_{\mu\nu\rho}}}{Z_{A}}(2\text{GeV}) \times \frac{5}{12} \left(5\langle \xi^{2} \rangle_{K}^{\text{bare}} - 1\right) = 0.217(31)$$

PRELIMINARY (contribution from mixing neglected):

$$a_2^{\pi}(2\text{GeV})|_{\overline{\text{MS}}} = \frac{Z_{O_{\mu\nu\rho}}}{Z_A}(2\text{GeV}) \times \frac{5}{12} \left(5\langle \xi^2 \rangle_{\pi}^{\text{bare}} - 1\right) = 0.241(51)$$

Comparison, Summary and Outlook

All results at $\mu = 2 \text{ GeV}$

	UKQCD/QCDSF	UKQCD
a_1^K	0.0453(9)(29)	0.055(5)
a_2^K	0.175(18)(47)	0.217(31)
a_2^{π}	0.201(114)	0.241(54)

- Results compatible
- UKQCD numbers for a^K₂ and a^π₂ (right column) are very preliminary and mixing is neglected in the renormalisation!

Comparison, Summary and Outlook

UKQCD-project

- a_1^K , a_2^K , a_2^π done
- reducing systematics:

- finite volume effects	done
- non-perturbative renormalisation	under way
- cut-off effects	scaling study under way
- chiral extrapolation	$m_{\pi} ightarrow$ 250 MeV ?

moments in the vector channel

General

- 'an independent calculation on the lattice would be both timely and useful' [Ball & Zwicky, 2006]
- results from two very different approaches in good agreement