(LCDAs for) η and η' mesons

Thorsten Feldmann

Workshop on light-cone distribution amplitudes (DA06) –
 IPPP Durham, 28.-30. Sep 2006

Outline

Decay constants and η - η ' mixing

- Matrix elements of octet and singlet currents
- Phenomenological values

Sensitivity to LCDAs in 2-photon processes

- Definitions
- CLEO measurement of $P\gamma$ form factors
- Phenomenological constraints on 2-particle DAs

More applications

Decay constants and η - η' mixing

イロト イヨト イヨト イヨト

Matrix elements of (local) octet and singlet currents [Kaiser/Leutwyler, hep-ph/9806336; TF/Kroll/Stech, hep-ph/9802409]

Definition of 4 independent decay constants

 $\langle 0|J^a_{\mu 5}|P(p)
angle = i\,f^a_P\,p^\mu$

- a = 8,0 for octet and singlet axial-vector currents
- $P = \eta, \eta'$ for physical meson states
- isospin breaking neglected

Two-angle parametrization

$$\begin{pmatrix} f_{\eta}^{8} & f_{\eta}^{0} \\ f_{\eta'}^{8} & f_{\eta'}^{0} \end{pmatrix} \equiv \begin{pmatrix} f_{8} \cos \theta_{8} & -f_{0} \sin \theta_{0} \\ f_{8} \sin \theta_{8} & f_{0} \cos \theta_{0} \end{pmatrix} = \begin{pmatrix} \cos \theta_{8} & -\sin \theta_{0} \\ \sin \theta_{8} & \cos \theta_{0} \end{pmatrix} \begin{pmatrix} f_{8} \\ f_{0} \end{pmatrix}$$

• $SU(3)_F$ limit: $\theta_8 = \theta_0 = 0^\circ$, $f_8 = f_\pi = f_K \neq f_0$

Phenomenological values (I)

- Change to quark-flavor basis $(u\bar{u} + d\bar{d} \text{ vs. } s\bar{s})$
- Assume *single* mixing angle $\phi_{u,d} = \phi_s = \phi$ (to be justified a-posteriori)

$$\begin{pmatrix} f_{\eta}^{q} & f_{\eta}^{s} \\ f_{\eta'}^{q} & f_{\eta'}^{s} \end{pmatrix} \equiv \begin{pmatrix} f_{q}\cos\phi & -f_{s}\sin\phi \\ f_{q}\sin\phi & f_{s}\cos\phi \end{pmatrix}$$

- Exploit relation between masses and decay constants from
 ^μJ^a_{μ5}
- Study various processes with η and η'

Result: [TF/Kroll/Stech, hep-ph/9802409]

$$\phi = 39.3^{\circ} \pm 1^{\circ}$$
, $f_q/f_{\pi} = 1.07 \pm 0.02$, $f_s/f_{\pi} = 1.34 \pm 0.06$

+ systematic effects from $\phi_q \neq \phi_s$ etc.

Central values translated to octet-singlet basis:

$$\theta_8 = -21.2^\circ$$
, $\theta_0 = -9.2^\circ$, $f_8/f_\pi = 1.26$, $f_0/f_\pi = 1.17$.

• similar/updated analysis in [Escribano/Frere, hep-ph/0501072], but larger values for f_8 and f_8 !

Phenomenological values (I)

- Change to quark-flavor basis $(u\bar{u} + d\bar{d} \text{ vs. } s\bar{s})$
- Assume *single* mixing angle $\phi_{u,d} = \phi_s = \phi$ (to be justified a-posteriori)

$$\begin{pmatrix} f_{\eta}^{q} & f_{\eta}^{s} \\ f_{\eta'}^{q} & f_{\eta'}^{s} \end{pmatrix} \equiv \begin{pmatrix} f_{q}\cos\phi & -f_{s}\sin\phi \\ f_{q}\sin\phi & f_{s}\cos\phi \end{pmatrix}$$

- Exploit relation between masses and decay constants from
 ^μJ^a_{μ5}
- Study various processes with η and η'

Result: [TF/Kroll/Stech, hep-ph/9802409]

$$\phi = 39.3^{\circ} \pm 1^{\circ}$$
, $f_q/f_{\pi} = 1.07 \pm 0.02$, $f_s/f_{\pi} = 1.34 \pm 0.06$

+ systematic effects from $\phi_q \neq \phi_s$ etc.

Central values translated to octet-singlet basis:

$$\theta_8 = -21.2^\circ$$
, $\theta_0 = -9.2^\circ$, $f_8/f_\pi = 1.26$, $f_0/f_\pi = 1.17$.

• similar/updated analysis in [Escribano/Frere, hep-ph/0501072], but larger values for fs and fg !

Phenomenological values (II)

- Use two-photon widths, $\Gamma[\eta(\eta') \rightarrow \gamma\gamma]$
- Use meson masses, pion and kaon decay constants.
- Use large-*N_c* relations
- Use lattice value for topological susceptibility

Result: [Shore, hep-ph/0601051] $\theta_8 = -20.1^\circ \pm 0.7^\circ$. $f_8/f_{\pi} = 1.13 \pm 0.02$, $\theta_0 = -12.3^\circ \pm 3.0^\circ$. $f_0/f_{\pi} = 1.15 \pm 0.05$. Central values translated to guark-flavour basis: $\phi_{\alpha} = 38.4^{\circ}, \quad \phi_{s} = 38.3^{\circ}, \quad f_{\alpha}/f_{\pi} = 1.07, \quad f_{s}/f_{\pi} = 1.21.$

Main discrepancies for f_8 respectively $f_s \Rightarrow$ increase error for f_s in FKS!

Sensitivity to LCDAs in 2-photon processes

Definitions of two-particle DAs (leading-twist only)

see, for instance, [Kroll/Passek-Kumericki, hep-ph/0210045] and references therein

Light-cone matrix elements:

$$\langle P(p) | \bar{q}(\lambda n) \not n \gamma_5 \lambda^a [\lambda n, 0] q(0) | 0 \rangle = -i f_P^a \int_0^1 du \, e^{i \, u \, \lambda} \phi_P^a(u, \mu)$$

$$n_\mu n^\nu \langle P(p) | G^{\mu\alpha}(\lambda n) [\lambda n, 0] G_{\alpha\nu}(0) | 0 \rangle = -\mathcal{N}_g \, i \, f_P^0 \int_0^1 du \, e^{i \, u \, \lambda} \phi_P^g(u, \mu)$$

Gegenbauer expansion:

$$\phi_P^a(x,\mu) = 6x(1-x) \left[1 + \sum_{n=2,4,\dots} B_{Pn}^a(\mu) C_n^{3/2}(2x-1) \right]$$

$$\phi_P^g(x,\mu) = x^2(1-x)^2 \sum_{n=2,4,\dots} B_{Pn}^g(\mu) C_{n-1}^{5/2}(2x-1)$$

- different conventions for normalization N_g of 2-gluon DA
- ϕ_P^g and ϕ_P^0 mix under evolution

CLEO measurement of $P\gamma$ form factors

[hep-ex/9707031]

• Interpolation formula: $(P \rightarrow \gamma \gamma, VDM, pQCD)$

$$F_{P\gamma}(Q^2) = rac{6C_q f_P^q}{Q^2 + 4\pi^2 f_q^2} + rac{6C_{\mathcal{S}} f_P^s}{Q^2 + 4\pi^2 f_s^2} \,,$$

[TF/Kroll, hep-ph/9805294]

$$C_q = rac{5}{9\sqrt{2}}, \ C_s = rac{1}{9}$$

< • • • **•**

Varying $f_s = (1.34 \pm 0.12) f_{\pi}$ (FKS, doubled error)

ightarrow pions (not shown), η and η' behave similarly,

i.e. no anomalous behaviour of η' in 2-photon processes

Thorsten Feldmann (Siegen)

• $P\gamma$ form factors at large Q^2 to leading-twist accuracy:

$$\begin{split} F_{P\gamma}(Q^2) &= F_{P\gamma}^8(Q^2) + F_{P\gamma}^0(Q^2) \\ &= T_8^{q\bar{q}}(u,Q^2) \otimes \phi_P^8(u) + T_0^{q\bar{q}}(u,Q^2) \otimes \phi_P^0(u) + T_0^{gg}(u,Q^2) \otimes \phi_P^g(u) \end{split}$$

$B_2^8 = -0.04 \pm 0.04 \,, \quad B_2^0 = -0.08 \pm 0.04 \,, \quad B_2^g = 9 \pm 12 \,$ (at $\mu_0 = 1 \; { m GeV}$)

- NLO, incl. mixing between ϕ_P^0 and ϕ_P^g under evolution
- truncate Gegenbauer expansion after n = 2
- simplifying asssumption $\phi_{\eta}^{a} = \phi_{\eta'}^{a} \equiv \phi_{a}$

Fit to CLEO and L3 data (II)

[Agaev/Stefanis, hep-ph/0307087]

 $B_2^q \geq 0.15\,, \quad B_2^g = \in \{16,20\}$ (at $\mu_0 = 1~{
m GeV})$

- incl. (model-dependent) estimates of power corrections (decreases result)
- ⇒ larger results for Gegenbauer coefficients
- also gives result for $\theta_8 = \theta_0$

• Electroproduction of η, η' mesons:

- factorization in terms of proton GPD and meson DAs
- ϕ_P^g already appears at leading order α_s

[e.g. Huang/Jakob/Kroll/Passek-Kumericki, hep-ph/0309071]

- Non-leptonic $B \rightarrow \eta(\eta')$ decays
 - also requires soft (non-factorizable) $B
 ightarrow \eta(\eta')$ form factors

[e.g. Beneke/Neubert, hep-ph/0210085]

.

• Charmonium decays into η and η'

• ...

- Update of phenomenological analysis for decay constants ?
 (include new data on *time-like* transition form factors from BaBar ? →)
- η - η' mixing and sum rules ? (analyses in [Ball/Zwicky, hep-ph/0406232; Ball, hep-ph/9812375] favour $B_2^{\eta} \simeq 0.1 - 0.2$)
- η-η' mixing and lattice QCD ? (for first result, see e.g. [hep-lat/0401005; hep-lat/0111056])

• . . .

BaBar measurement of *time-like* $P\gamma$ form factors

[hep-ex/0605018]

• experimental result for form-factor ratio at $q^2 = 112 \text{ GeV}^2$:

 $F_{\eta'\gamma}:F_{\eta\gamma}=1.10\pm0.17$

using FKS values (and doubled error for fs)

 $F_{\eta^\prime\gamma}:F_{\eta\gamma}=1.65\pm0.12$

- smaller value of mixing angle ϕ ?
- important contribution from ϕ_0^g ?
- problem with factorization for time-like processes ?