B-meson Distribution Amplitude in QCD: Facts and Fancy

V. M. Braun

University of Regensburg

IPPP, 30 September 2006

based on

Kawamura, Kodaira, Qiao, Tanaka Phys. Lett. B523 (2001) 111 [Err.-ibid. B536 (2002) 344]

Lange, Neubert Phys. Rev. Lett. 91 (2003) 102001

Braun, Ivanov, Korchemsky Phys. Rev. D69 (2004) 034014

Outline

(1) Exclusive B-Decays: a Walkthrough
2) Definition and Renormalization

3 Lange - Neubert Evolution Equation
(4) Equations of Motion
(5) QCD Sum Rules

QCD factorization for hadronic decays

- Heavy quark expansion methods $\left(m_{b} \gg \Lambda_{\mathrm{QCD}}\right)$
- Soft-collinear factorization (final state particle energies $\gg \Lambda_{\mathrm{QCD}}$)

BBNS approach:

$$
\begin{aligned}
& \left\langle M_{1} M_{2}\right| O_{i}|B\rangle=F^{B \rightarrow M_{1}}(0) \int_{0}^{1} d u T^{(1)}(u) \Phi_{M_{2}}(u) \\
& +\int_{0}^{\infty} d \omega \int_{0}^{1} d u d v T^{(2)}(\omega, u, v) \Phi_{B}(\omega) \Phi_{M_{1}}(u) \Phi_{M_{2}}(v)
\end{aligned}
$$

$$
\begin{gathered}
u, v-\text { momentum fractions } \\
\omega \text { - light quark energy } \\
\text { in B-meson } \\
\Phi_{M, B}-\text { distribution amplitudes }
\end{gathered}
$$

Heavy-to-light form factors

- Gluon does not 'want' to be hard
- Naive collinear factorization breaks down

Light Cone Sum Rules

Bagan, Ball, V.B '98

$f_{+}\left(q^{2}\right)=\frac{f_{\pi}}{f_{B}^{\text {stat }}} \frac{\sqrt{m_{B}} \omega_{0}^{2}}{4 E^{2}}\left\{\Phi_{\pi}^{\prime}(0) \exp \left[-\frac{\alpha_{s} C_{f}}{2 \pi} \ln ^{2} \frac{m_{B} x}{2 \omega_{0}}\right]\right.$

- Additive soft contribution
- Separation scheme-dependent
$\left.-\frac{\alpha_{s} C_{f}}{2 \pi}\left[\left(1-\ln \frac{2 \omega_{0}}{\mu}\right) \int_{0}^{1} d u \frac{\Phi_{\pi}(u)-\bar{u} \Phi_{\pi}^{\prime}(0)}{\bar{u}^{2}}+\left(1-x-\ln \frac{2 \omega_{0}}{\mu}\right) \int_{0}^{1} d u \frac{\Phi_{\pi}(u)}{\bar{u}}\right]\right\}$

Here: E is pion energy in B rest frame; $\quad q^{2}=m_{B}^{2}(1-x) ; \quad x=2 E m_{B} ; \quad \mu=\mu_{\text {MS }}$ ω_{0} is an effective IR cutoff (interval of duality); $\bar{u}=1-u$

- Note $f_{+} \sim \frac{\sqrt{m_{B}}}{E^{2}}$

$$
f_{+}\left(q^{2}\right)=C_{+}\left(q^{2}\right) \zeta_{\pi}\left(q^{2}\right)+\int_{0}^{\infty} d \omega \int_{0}^{1} d u T_{+}\left(q^{2} ; \omega, u\right) \Phi_{B}(\omega) \Phi_{\pi}(u)
$$

- C_{+}and T_{+}are dominated by scales m_{B} and $\sqrt{m_{B} \Lambda}$
- The form factor $\zeta_{\pi}\left(q^{2}\right)$ is universal, i.e. the same for $f_{+}\left(q^{2}\right)$ and $f_{-}\left(q^{2}\right)$
- The form factor $\zeta_{\pi}\left(q^{2}\right)$ is a mixture of hard-collinear, collinear and soft subprocess
$\underline{\text { Singular case: } B \rightarrow \ell \nu \gamma}$
Descotes-Genon, Sachrajda '02-'03

- No soft contributions
- Similar to $\pi \gamma^{*} \gamma$
- This should serve to define and determine B-meson distribution amplitude

B-Meson Distribution Amplitude

Definition

(?)Grozin, Neubert '97

$$
\langle 0|\left[\bar{q}(t n) \not 2[t n, 0] \Gamma h_{\nu}(0)\right]_{R}|\bar{B}(v)\rangle=-\frac{i}{2} f_{B}^{\text {stat }}(\mu) \operatorname{Tr}\left[\gamma_{5} \not\left\langle\Gamma P_{+}\right] \Phi_{B}(t, \mu)\right.
$$

- v_{μ} is the heavy quark velocity, n_{μ} is the light-like vector, $n^{2}=0$, such that $n \cdot v=1$,
- $P_{+}=\frac{1}{2}(1+y)$ is the projector on upper components of the heavy quark spinor
- $|\bar{B}(v)\rangle$ is the \bar{B}-meson state in the heavy quark effective theory (HQET)
- All divergences are assumed to be dimensionally regularized

In momentum space

$$
\Phi_{B}(\omega, \mu)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d t e^{i \omega t} \Phi_{B}(t-i 0, \mu)
$$

- ω is the light quark energy in the b -quark rest frame

Renormalization, One loop

$O_{+}(t)=\bar{q}(t n) n[t n, 0] \Gamma h_{v}(0)$

$$
O_{+}^{\mathrm{ren}}(\omega, \mu)=\int d \omega^{\prime} Z_{+}\left(\omega, \omega^{\prime} ; \mu\right) O_{+}^{\mathrm{bare}}\left(\omega^{\prime}\right)
$$

in momentum space

$$
\begin{aligned}
Z_{+}\left(\omega, \omega^{\prime} ; \mu\right) & =\delta\left(\omega-\omega^{\prime}\right)+\frac{\alpha_{s} C_{F}}{4 \pi} Z_{+}^{(1)}\left(\omega, \omega^{\prime} ; \mu\right)+\ldots \\
Z_{+}^{(1)}\left(\omega, \omega^{\prime} ; \mu\right) & =\left(\frac{4}{\hat{\epsilon}^{2}}+\frac{4}{\hat{\epsilon}} \ln \frac{\mu}{\omega}-\frac{5}{\hat{\epsilon}}\right) \delta\left(\omega-\omega^{\prime}\right)-\frac{4}{\hat{\epsilon}}\left[\frac{\omega}{\omega^{\prime}} \frac{\theta\left(\omega^{\prime}-\omega\right)}{\omega^{\prime}-\omega}+\frac{\theta\left(\omega-\omega^{\prime}\right)}{\omega-\omega^{\prime}}\right]_{+}
\end{aligned}
$$

in coordinate space
V.B., Ivanov, Korchemsky '04

$$
\begin{aligned}
O_{+}^{\text {ren }}(t, \mu) & =O_{+}^{\text {bare }}(t)+\frac{\alpha_{s} C_{F}}{4 \pi}\left\{\left(\frac{4}{\hat{\epsilon}^{2}}+\frac{4}{\hat{\epsilon}} \ln (i t \mu)\right) O_{+}^{\text {bare }}(t)\right. \\
& \left.-\frac{4}{\hat{\epsilon}} \int_{0}^{1} d u \frac{u}{\bar{u}}\left[O_{+}^{\text {bare }}(u t)-O_{+}^{\text {bare }}(t)\right]-\frac{1}{\hat{\epsilon}} O_{+}^{\text {bare }}(t)\right\}
\end{aligned}
$$

- Note $\ln (i t \mu)$ which is non-analytic at $t \rightarrow 0$
- quasilocality

Renormalization, One loop - continued

what is the meaning of $\ln (i t \mu)$?

- comes from the term $\sim(\mu t)^{\epsilon} / \epsilon^{2}$ in the heavy vertex
- large for $t \gg 1 / \mu$ - physical, typical Sudakov double logs
- large for $t \ll 1 / \mu$ - artefact, since $t \gg 1 / m_{b}$ make sense what are the consequences?
renormalization does not commute with the short-distance expansion

$$
\left[\bar{q}(t n) \not p[t n, 0] \Gamma h_{v}(0)\right]_{R} \quad \neq \quad \sum_{p=0}^{\infty} \frac{t^{p}}{p!}\left[\bar{q}(0)(\overleftarrow{D} \cdot n)^{p} h_{v}(0)\right]_{R}
$$

$\Rightarrow \Phi_{B}(\omega, \mu)$ develops a radiative tail at large light-quark momenta

$$
\Phi_{B}(\omega, \mu) \sim-\frac{\ln \omega}{\omega}
$$

\Rightarrow All integer moments $\int d k k^{p} \phi_{+}(k, \mu)$ for $p=0,1,2, \ldots$ are not related to matrix elements of local operators and in fact do not exist
is this acceptable?

- unclear, quantity of prime interest is rather

$$
\lambda_{B}^{-1}(\mu)=\int_{0}^{\infty} \frac{d \omega}{\omega} \Phi_{+}(\omega, \mu)
$$

- can the large-momentum tail be removed by a finite renormalization?

Lange - Neubert Evolution Equation

Conjecture: autonomous evolution

$$
\begin{aligned}
\mu \frac{d}{\mu} \Phi_{+}(\omega, \mu) & =-\int_{0}^{\infty} d \omega^{\prime} \gamma_{+}\left(\omega, \omega^{\prime}, \mu\right) \Phi_{+}\left(\omega^{\prime}, \mu\right) \\
\gamma_{+}\left(\omega, \omega^{\prime}, \mu\right) & =\left[4 \ln \frac{\mu}{\omega}-5\right] \delta\left(\omega^{\prime}-\omega\right)-4\left[\frac{\omega}{\omega^{\prime}} \frac{\theta\left(\omega^{\prime}-\omega\right)}{\omega^{\prime}-\omega}+\frac{\theta\left(\omega-\omega^{\prime}\right)}{\omega-\omega^{\prime}}\right]_{+}
\end{aligned}
$$

For large scales $\mu \sim m_{b} \rightarrow \infty$ obtain asymptotic behavior

$$
\Phi_{+}(\omega, \mu) \sim\left\{\begin{array}{ll}
\omega ; & \text { for } \omega \rightarrow 0 \\
\omega^{-1+g} ; & \text { for } \omega \rightarrow \infty
\end{array}, \quad g=\frac{2 C_{f}}{\beta_{0}} \ln \frac{\alpha_{s}\left(\mu_{0}\right)}{\alpha_{s}(\mu)} \rightarrow \infty\right.
$$

- small-momentum behavior $\Phi_{+}(\omega, \mu) \sim \omega$ is supported
- unphysical rise at large light quark momenta, artefact
- Naive SCET factorization in $B \rightarrow \ell \nu \gamma$ is destroyed by the resummation

Equations of Motion

general parametrization compatible with Lorentz and heavy quark symmetry involves two two-particle DAs
$\langle 0| \bar{q}(z) \Gamma h_{v}(0)|\bar{B}(v)\rangle=-\frac{i}{2} f_{B} m_{B} \operatorname{Tr}\left[\gamma_{5} \Gamma P_{+}\left\{\phi_{+}(t)-\frac{\nexists}{2 t}\left[\phi_{+}(t)-\phi_{-}(t)\right]\right\}\right], \quad t=v z$
and four three-particle DAs
Kawamura et al. '02

$$
\begin{aligned}
\langle 0| \bar{q}(z) g G_{\mu \nu}(u z) z^{\nu} \Gamma h_{\nu}(0)|\bar{B}(v)\rangle= & \frac{1}{2} f_{B} m_{B} \operatorname{Tr}\left[\gamma _ { 5 } \Gamma P _ { + } \left\{\left(v_{\mu} \not \not-t \gamma_{\mu}\right)\left(\Psi_{A}(t, u)-\Psi_{V}(t, u)\right)\right.\right. \\
& \left.\left.-i \sigma_{\mu \nu} z^{\nu} \Psi_{V}(t, u)-z_{\mu} X_{A}(t, u)+\frac{z_{\mu}}{t} \nexists Y_{A}(t, u)\right\}\right]
\end{aligned}
$$

that are not independent but related by EOM and in particular because of certain exact operator identities

Equations of Motion - continued

solving these equations, Kawamura et al. obtain in momentum space

$$
\begin{aligned}
\omega \frac{d \phi_{-}(\omega)}{d \omega}+\phi_{+}(\omega) & =I(\omega) \\
(\omega-2 \bar{\Lambda}) \phi_{+}(\omega)+\omega \phi_{-}(\omega) & =J(\omega)
\end{aligned}
$$

where $I(\omega)$ and $J(\omega)$ are certain integrals of three-particle functions
They define a "WW" approximation by setting $I(\omega)=J(\omega)=0$ and obtain, from the first eq.:

$$
\phi_{-}^{(W W)}(\omega)=\int_{\omega}^{\infty} \frac{d \omega^{\prime}}{\omega^{\prime}} \phi_{+}^{(W W)}(\omega) \quad \text { Beneke, Feldmann '01 }
$$

whereas combining the both eqs:

$$
\begin{aligned}
\phi_{+}^{(W W)}(\omega) & =\frac{\omega}{2 \bar{\Lambda}^{2}} \theta(2 \bar{\Lambda}-\omega) \\
\phi_{-}^{(W W)}(\omega) & =\frac{2 \bar{\Lambda}-\omega}{2 \bar{\Lambda}^{2}} \theta(2 \bar{\Lambda}-\omega)
\end{aligned}
$$

adding gluon corrections they reproduce the relations between the moments of $\phi_{+}(\omega)$ and matrix elements of quark-gluon operators, derived earlier by Grosin and Neubert

Equations of Motion - continued (2)

? Results are striking, but are they consistent with the LN autonomous evolution?
(3) Kawamura et al. use a different definition of the DA

- In their approach, nonlocal operators are defined as generating functions of local operators, with e.g. power divergences subtracted
- Accepting this, it remains unclear whether separation of WW contributions is legitimate in the present context
(2) If a Lange-Neubert definition is used, how much of the results remain?
- The first equation of Kawamura et al. holds true \rightarrow Beneke-Feldmann relation
- Derivation of the second equation requires going off-light-cone and probably will have to be reconsidered
- Autonomous evolution could justify the WW approximationFurther study needed

QCD Sum Rules: local duality limit

Grosin, Neubert, '97

V.B., Ivanov, Korchemsky, '04

To derive the sum rules consider the following correlation function in HQET:

$$
\begin{gathered}
i \int d^{4} x e^{-i \omega(v x)}\langle 0| \mathrm{T}\left\{\bar{q}(t n) \not \nmid \Gamma_{1}[t n, 0] h_{v}(0) \bar{h}_{v}(x) \Gamma_{2} q(x)\right\}|0\rangle=-\frac{1}{2} \operatorname{Tr}\left[\not \nsim \Gamma_{1} P_{+} \Gamma_{2}\right] T(t, \omega) \\
T(t, \omega)=\frac{1}{2} F^{2}(\mu) \frac{1}{\bar{\Lambda}-\omega} \int_{0}^{\infty} d k e^{-i k t} \phi_{+}(k, \mu)+\ldots
\end{gathered}
$$

- Sorry for the change in notation $\omega \rightarrow k$

local duality limit

$$
\phi_{+}(k)^{\mathrm{LD}}=\frac{3}{4 \omega_{0}^{3}} \theta\left(2 \omega_{0}-k\right) k\left(2 \omega_{0}-k\right)
$$

- resembles asymptotic pion DA, if rewritten in terms of the scaling variable $\xi=k /\left(2 \omega_{0}\right)$
- does not agree with the WW result by Kawamura et al.

QCD Sum Rules: radiative corrections

- $\mathcal{O}\left(\alpha_{s}\right)$ radiative corrections calculated

Figure: B-meson distribution amplitude $\phi_{+}(k, \mu=1 \mathrm{GeV})$ calculated from the sum rule in QCD perturbation theory to leading order (dashed curves) and next-to-leading order (solid curves) for the continuum threshold $\omega_{0}=1 \mathrm{GeV}$ and two values of the Borel parameter $M=0.3 \mathrm{GeV}$ (left panel) and $M=0.6 \mathrm{GeV}$ (right panel).
as expected

$$
\phi_{+}(k) \sim k \text { for } k \rightarrow 0, \quad \phi_{+}(k) \sim-\frac{1}{k} \ln (k / \mu) \text { for } k \gg \mu,
$$

QCD Sum Rules: nonperturbative corrections

V.B., Ivanov, Korchemsky, '04

- Problem: OPE produces an expansion in derivatives of $\delta(k)$

$$
T^{\langle\bar{q} q\rangle}(t, \omega)=\frac{\langle\bar{q} q\rangle}{2 \omega} \quad \phi_{+}(k) \sim \ldots-\frac{1}{2}\langle\bar{q} q\rangle \delta(k)
$$

- Write SR for the DA as a function of imaginary light-cone distance $t=-i \tau$
- Resum large logarithms - Sudakov factor

$$
S(\tau, M, \mu)=\exp \left\{-\frac{\alpha_{S} C_{F}}{2 \pi}\left[\ln ^{2}\left(\tau \mu e^{\gamma_{E}}\right)+\frac{5 \pi^{2}}{24}-1-\ln \frac{\mu e^{\gamma_{E}}}{2 M}+\operatorname{Li}_{2}(-2 \tau M)\right]\right\}
$$

"improved" sum rule:

$$
\begin{aligned}
\frac{1}{2} F^{2}(\mu) e^{-\bar{\Lambda} / M} \varphi_{+}(\tau, \mu) & =\int_{0}^{\omega_{0}} d s e^{-s / M} \rho_{\text {pert }}(s, \tau, \mu)-\frac{1}{2}\langle\bar{q} q\rangle S(\tau, M, \mu)\left\{1+\frac{\alpha_{s} C_{F}}{2 \pi}\left[2-\ln \left(\tau \mu e^{\gamma_{E}}\right)\right.\right. \\
& \left.\left.-\ln \frac{\mu e^{\gamma_{E}}}{2 M}-\ln (1+2 \tau M)\right]+\frac{1}{48}\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle \frac{M \tau^{2}}{(1+2 \tau M)^{2}}-\frac{1}{16} \frac{m_{0}^{2}}{M^{2}}(1+2 \tau M)\right\}
\end{aligned}
$$

- not enough, introduce nonlocal condensate

QCD Sum Rules: Results

parameters:

$$
\begin{aligned}
\lambda_{B}(\mu) & =\int_{0}^{\infty} \frac{d k}{k} \phi_{+}(k, \mu) \\
\sigma_{B}(\mu) & =\lambda_{B}(\mu) \int_{0}^{\infty} \frac{d k}{k} \ln \frac{\mu}{k} \phi_{+}(k, \mu)
\end{aligned}
$$

simple parametrization:

$$
\phi_{+}(k, \mu=1 \mathrm{GeV})=\frac{4 \lambda_{B}^{-1}}{\pi} \frac{k}{k^{2}+1}\left[\frac{1}{k^{2}+1}-\frac{2\left(\sigma_{B}-1\right)}{\pi^{2}} \ln k\right]
$$

$$
\begin{array}{rll}
\lambda_{B}^{-1}(\mu=1 \mathrm{GeV}) & =2.15 \pm 0.5 \mathrm{GeV}^{-1} & \lambda_{B}(\mu=1 \mathrm{GeV})=460 \pm 110 \mathrm{MeV} \\
\sigma_{B}(\mu=1 \mathrm{GeV}) & =1.4 \pm 0.4 &
\end{array}
$$

compare

$$
\begin{array}{rll}
\lambda_{B} & =350 \pm 150 \mathrm{MeV} & B B N S, D S^{\prime} 03 \\
\lambda_{B} & =\bar{\Lambda} \sim 400-500 \mathrm{MeV} & K K Q T^{\prime} 01 \\
\lambda_{B} & =473 \mathrm{MeV} & K L S^{\prime} 01 \\
\lambda_{B} & \simeq 600 \mathrm{MeV} & B K^{\prime} 03
\end{array}
$$

to summarize:

Thank you for attention!

