Higher Twist Meson DAs Patricia Ball

IPPP, Durham

DA06, Durham Sep 3006

Why Higher Twist?

e power corrections to various processes: phenomenologically relevant for small and moderate momentum transfer/mass scales
e QCD sum rules on the light-cone for B and D decays
a some power corrections in QCD factorisation of non-leptonic and radiative B decays
e $\mathrm{EM} \pi$ form factor, $\pi \gamma$ transition form factor etc.
e leading order corrections in special cases, e.g. CP asymmetry in $B \rightarrow K^{*} \gamma$
e complete results available for twist 3 \& 4 of light (pseudoscalar and vector) mesons

What DAs?

Two-particle DAs:

$$
\langle 0| \bar{\psi}_{2}(x)[x,-x] \Gamma \psi_{1}(-x)|M\rangle \sim \int_{0}^{1} d u e^{i p x(2 u-1)} \phi(u)
$$

Pseudoscalar mesons:

Twist	$(\mu \nu)$	$\bar{\psi} \sigma_{\mu \nu} \gamma_{5} \psi$	(μ)	$\bar{\psi} \gamma_{\mu} \gamma_{5} \psi$	$\bar{\psi} \gamma_{5} \psi$
3	$\star \star$	ϕ_{σ}			ϕ_{p}
4			$\cdot x^{2}$	\mathbb{A}	

For vector mesons, there are more DAs, reflecting the two possible polarisations.

What DAs?

3-particle DAs:
$\langle 0| \bar{\psi}_{2}(x)[x, u x] \Gamma G(u x)[u x,-x] \psi_{1}(-x)|M\rangle \sim \int \prod_{i=1}^{3} d \alpha_{i} \delta\left(1-\sum \alpha_{1}\right) e^{-i p x\left(-\alpha_{1}+\alpha_{2}+u \alpha_{3}\right)} \mathcal{T}\left(\alpha_{i}\right)$
Pseudoscalar mesons:

Twist	$(\mu \nu \alpha \beta)$	$\bar{\psi} \sigma_{\mu \nu} \gamma_{5} G_{\alpha \beta} \psi$	$(\mu \alpha \beta)$	$\bar{\psi} \gamma_{\mu} \gamma_{5} G_{\alpha \beta} \psi$	$\bar{\psi} \gamma_{\mu} \widetilde{G}_{\alpha \beta} \psi$		
3	$\cdot \perp \cdot \perp$	\mathcal{T}					
4			$\cdots *$	$\mathcal{A}_{\\|}$	$\mathcal{V}_{\\|}$		
			$\perp \perp$.	\mathcal{A}_{\perp}	\mathcal{V}_{\perp}		

Vector mesons:

Twist	$(\mu \nu \alpha)$	$\bar{\psi} \widetilde{G}_{\mu \nu} \gamma_{\alpha} \gamma_{5} \psi$	$\bar{\psi} G_{\mu \nu} \gamma_{\alpha} \psi$	$(\mu \nu \alpha \beta)$	$\bar{\psi} G_{\mu \nu} \sigma_{\alpha \beta} \psi$	$(\mu \nu)$	$\bar{\psi} G_{\mu \nu} \psi$	$\bar{\psi} \widetilde{G}_{\mu \nu} \gamma_{5} \psi$
3	$\cdot \perp \cdot$	\mathcal{A}	\mathcal{V}	$\cdot \perp \cdot \perp$	\mathcal{T}			
4	$\cdot \perp \perp$	$\widetilde{\Phi}$	Φ	$\perp \perp \cdot \perp$	$T_{1}^{(4)}$	$\cdot \perp$	S	\widetilde{S}
	$\cdot *$	$\widetilde{\Psi}$	Ψ	$\cdot \perp \perp \perp$	$T_{2}^{(4)}$			
				$\cdot * \cdot \perp$	$T_{3}^{(4)}$			
				$\cdot \perp \cdot *$	$T_{4}^{(4)}$			

A Headcount (or Bodycount?)

Pseudoscalars:
T3: 2 two-particle, 1 three-particle DA
T4: 2 two-particle, 5 three-particle DA

Vectors:
T3: 4 two-particle, 3 three-particle DA
T4: 4 two-particle, 12 three-particle DA

A Headcount (or Bodycount?)

Pseudoscalars:
T3: 2 two-particle, 1 three-particle DA
T4: 2 two-particle, 5 three-particle DA

Vectors:
T3: 4 two-particle, 3 three-particle DA
T4: 4 two-particle, 12 three-particle DA

Fortunately the number of independent DAs is smaller!
Reduce DOF by applying exact operator relations
\rightsquigarrow integral relations for DAs.

The Tools: Conformal Expansion and Exact Operator Relations

e step 1: operator relation, follows from QCD equations of motion:

$$
\partial_{\mu}\left\{\bar{q}(x) \gamma_{\mu} \gamma_{5} s(-x)\right\}=-i \int_{-1}^{1} d v \bar{q}(x) x_{\alpha} g G_{\alpha \mu}(v x) \gamma_{\mu} \gamma_{5} s(-x)+\left(m_{s}+m_{q}\right) \bar{q}(x) i \gamma_{5} s(-x)
$$

e step 2: take matrix elements \rightsquigarrow relation between DAs:

$$
\psi_{K ; 4}(u)=m_{K}^{2}\left\{2 \phi_{3 ; K}^{p}(u)-\phi_{2 ; K}(u)\right\}+\frac{d}{d u} \int_{0}^{u} d \alpha_{1} \int_{0}^{\bar{u}} d \alpha_{2} \frac{2\left(\Phi_{4 ; K}(\underline{\alpha})-2 \Psi_{4 ; K}(\underline{\alpha})\right)}{1-\alpha_{1}-\alpha_{2}}
$$

e step 3: replace DAs on r.h.s. by their conformal expansion:

$$
\begin{aligned}
\psi_{4 ; K}(u)= & \psi_{4 ; K}^{T 4}(u)+\psi_{4 ; K}^{W W}(u) \\
\psi_{4 ; K}^{T 4}(u)= & \frac{20}{3} \delta_{K}^{2} C_{2}^{1 / 2}(2 u-1)+5\left\{5 \theta_{1}^{K}-\theta_{2}^{K}\right\} C_{3}^{1 / 2}(2 u-1) \\
\psi_{4 ; K}^{W W}(u)= & m_{K}^{2}\left\{1+6 \rho_{+}^{K}\left(1+6 a_{2}^{K}\right)-18 \rho_{-}^{K} a_{1}^{K}\right\} C_{0}^{1 / 2}(2 u-1) \\
& +m_{K}^{2}\left\{-12 \kappa_{4 K}-\frac{9}{5} a_{1}^{K}+27 \rho_{+}^{K} a_{1}^{K}-3 \rho_{-}^{K}\left(1+18 a_{2}^{K}\right)\right\} C_{1}^{1 / 2}(2 u-1) \\
& \left.+\left\{m_{K}^{2}\left(1+\frac{18}{7} a_{2}^{K}+30 \rho_{+}^{K} a_{2}^{K}-6 \rho_{-}^{K} a_{1}^{K}\right)+60 \frac{f_{3 K}}{f_{K}}\left(m_{s}+m_{q}\right)\right\} C_{2}^{1}\right\}_{2}(\mathfrak{x} \\
& +\left\{m_{K}^{2}\left(\underline{9} a_{1}^{K}+\underline{16} \kappa_{4 K}-9 \rho_{-}^{K} a_{2}^{K}\right)+20 \underline{f_{3 K}}\left(m_{s}+m_{g}\right) \lambda_{3 K}\right\} C_{2}^{1 \not 02^{5}}(2 u
\end{aligned}
$$

The Tools: Conformal Expansion and Exact Operator Relations

e conformal expansion for T2 DAs:

$$
\phi\left(u, \mu^{2}\right)=6 u(1-u)\left(1+\sum_{n=1}^{\infty} a_{n}\left(\mu^{2}\right) C_{n}^{3 / 2}(2 u-1)\right):
$$

partial wave expansion in conformal spin \equiv conformal expansion
e symmetry group of massless QCD:
$S L(2, R)$, collinear subgroup of the conformal group symmetry anomalous, broken at NLO
fields with fixed Lorentz-spin projection on the light-cone have definite conformal spin $j=1 / 2(l+s)$
\rightarrow good quantum number in LO QCD

I = canonical mass-dimension, s = Lorentz-spin projection

The Tools: Conformal Expansion and Exact Operator Relations

e asymptotic DA of m-particle state with lowest possible conformal spin:

$$
\phi_{a s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \propto \alpha_{1}^{2 j_{1}-1} \alpha_{2}^{2 j_{2}-1} \ldots \alpha_{m}^{2 j_{m}-1}
$$

Higher waves given by polynomials in m variables α_{i} ($\sum_{i} \alpha_{i}=1$), which are orthogonal over weight function $\phi_{a s}$
e symmetry group of massless QCD:
$S L(2, R)$, collinear subgroup of the conformal group symmetry anomalous, broken at NLO fields with fixed Lorentz-spin projection on the light-cone have definite conformal spin $j=1 / 2(l+s)$
\rightarrow good quantum number in LO QCD

I = canonical mass-dimension, s = Lorentz-spin projection

Where do we stand now?

e π and η_{8} two- and three-particle DAs known to T4
(Braun/Filyanov 90, Ball 98)
e K DAs known to T 4 (Ball/Braun/Lenz 06)
e η^{\prime} (i.e. η_{0}) (QCD anomaly) (??)
e ρ and ϕ DAs known to T4 (Ball/Braun/Koike/Tanaka 98, Ball/Braun 98)
e K^{*} DAs to T 4 in preparation (Ball/Braun/Jones/Lenz 06)
e 2-particle T3 DAs of $K_{1}\left(1^{+}\right)$mesons (K.C. Yang 05/06)
e $K^{(*)}$ more complicated than π, ρ etc. because of G-odd (antisymmetric) contributions.
e to NLO in conformal expansion, need 6 hadronic T3/4 parameters for K DAs
e ditto 16 T3/4 parameters for K^{*}
e all hadronic parameters determined from QCD sum rules (admittedly not their fi nest hour...)

Applications

$\mathbf{C P}$ violation in $B \rightarrow K^{*} \gamma\left(B_{s} \rightarrow \phi \gamma\right)$

e $b \rightarrow s \gamma$ is actually either $b_{R} \rightarrow s_{L} \gamma_{L}$ (with, in the SM, a helicity factor m_{b}) or $b_{L} \rightarrow s_{R} \gamma_{R}$ (with, in the SM, a helicity factor m_{s}): γ dominantly left-polarised, γ_{R} suppressed by m_{s} / m_{b}
e entails a small time-dependent CP asymmetry (interference of γ_{L} / γ_{R} amplitudes):

$$
\begin{aligned}
A_{\mathrm{CP}} & =\frac{\Gamma\left(\bar{B}^{0}(t) \rightarrow \bar{K}^{* 0} \gamma\right)-\Gamma\left(B^{0}(t) \rightarrow K^{* 0} \gamma\right)}{\Gamma\left(\bar{B}^{0}(t) \rightarrow \bar{K}^{* 0} \gamma\right)+\Gamma\left(B^{0}(t) \rightarrow K^{* 0} \gamma\right)} \\
& \approx-2 \frac{m_{s}}{m_{b}} \sin (2 \beta) \sin \left(\Delta m_{B} t\right) \approx-2 \% \cdot \sin \left(\Delta m_{B} t\right)
\end{aligned}
$$

e helicity suppression removed by new physics if spin flip can occur on virtual line (e.g. left-right symmetric model, MSSM): factor $m_{\text {virtual }} / m_{b}$ instead of m_{s} / m_{b}
e this is a so-called (quasi) null test of the SM!

CP Asymmetry in $\boldsymbol{B}_{d} \rightarrow \boldsymbol{K}^{*} \gamma\left(\boldsymbol{B}_{s} \rightarrow \phi \gamma\right)$

Caveat emptor! No helicity suppression in 3-parton process $b \rightarrow s \gamma g$.
Contributes to $B \rightarrow K^{*} \gamma$
if B or K^{*} is in three-particle qqg state!

Estimated to increase $A_{\text {CP }}$ to $\sim 10 \%$
(Grinstein/Pirjol 05, dimensional estimate in SCET).
Can one do better?

$\mathbf{C P}$ violation in $B \rightarrow K^{*} \gamma\left(B_{s} \rightarrow \phi \gamma\right)$

e calculate effective operator for soft-gluon emission in $1 / m_{c}$ expansion
e calculate relevant hadronix matrix element from QCD sum rules on the light-cone
e LCSR contains T3 \& 4 three-particle DAs
e result: $A_{\mathrm{CP}}=-(2 \pm 2) \% \sin \left(\Delta m_{B} t\right)$ (Ball/Zwicky 06)
e CP asymmetries in $B_{d} \rightarrow K^{*} \gamma$ and $B_{s} \rightarrow \phi \gamma$ remain near-perfect null test of SM!

Exact Relations between T2 and T4 MEs

Define T4 MEs κ_{4} (G-odd):

$$
\begin{aligned}
\langle 0| \bar{q}\left(g G_{\alpha \mu}\right) i \gamma^{\mu} \gamma_{5} s|K(q)\rangle & =i q_{\alpha} f_{K} m_{K^{\kappa}}^{2} \kappa_{4}(K), \\
\langle 0| \bar{q}\left(g G_{\alpha \mu}\right) i \gamma^{\mu} s\left|K^{*}(q, \lambda)\right\rangle & =e_{\alpha}^{(\lambda)} f_{K}^{\|} m_{K^{*}}^{3} \kappa_{4}^{\|}\left(K^{*}\right), \\
\langle 0| \bar{q}\left(g G_{\alpha}{ }^{\mu}\right) \sigma_{\beta \mu} s\left|K^{*}(q, \lambda)\right\rangle & =f_{K}^{\perp} m_{K^{*}}^{2}\left\{\kappa_{4}^{\perp}\left(K^{*}\right)\left(e_{\alpha}^{(\lambda)} q_{\beta}-e_{\beta}^{(\lambda)} q_{\alpha}\right)+\ldots\right\} .
\end{aligned}
$$

κ_{4} related to T2 ME a_{1} :

$$
\begin{aligned}
\frac{9}{5} a_{1}(K) & =-\frac{m_{s}-m_{q}}{m_{s}+m_{q}}+4 \frac{m_{s}^{2}-m_{q}^{2}}{m_{K}^{2}}-8 \kappa_{4}(K), \\
\frac{3}{5} a_{1}^{\|}\left(K^{*}\right) & =-\frac{f_{K}^{\perp}}{f_{K}^{\|}} \frac{m_{s}-m_{q}}{m_{K^{*}}}+2 \frac{m_{s}^{2}-m_{q}^{2}}{m_{K^{*}}^{2}}-4 \kappa_{4}^{\|}\left(K^{*}\right), \\
\frac{3}{5} a_{1}^{\perp}\left(K^{*}\right) & =-\frac{f_{K}^{\|}}{f_{K}^{\perp}} \frac{m_{s}-m_{q}}{2 m_{K^{*}}}+\frac{3}{2} \frac{m_{s}^{2}-m_{q}^{2}}{m_{K^{*}}^{2}}+6 \kappa_{4}^{\perp}\left(K^{*}\right) .
\end{aligned}
$$

Exact Relations between T2 and T4 MEs

$$
\begin{equation*}
\frac{9}{5} a_{1}(K)=-\frac{m_{s}-m_{q}}{m_{s}+m_{q}}+4 \frac{m_{s}^{2}-m_{q}^{2}}{m_{K}^{2}}-8 \kappa_{4}(K) \tag{Braun/Lenz04}
\end{equation*}
$$

implies, for $m_{q} \rightarrow 0: \kappa_{4}(K)=-\frac{1}{8}+O\left(m_{s}\right)$

These relations can be used to either constrain a_{1} or κ_{4} or to check the consistency of an independent calculation of either.

Where do they come from?
local expansion of non-local operator relations
\leftrightarrow boundary conditions for differential equations for DAs
$\leftrightarrow \quad$ conditions for 1 st moment of T4 DAs

What the Future holds. . .

e finish calculation of K^{*} DAs (Ball/Braun/Jones/Lenz): Xmas present?
e find more interesting applications like $B \rightarrow K^{*} \gamma$?
e look into η^{\prime} ?
a $J / \psi \rightarrow \eta^{\left({ }^{(}\right)} \gamma$ sensitive to $\langle 0| G \widetilde{G}\left|\eta^{\left({ }^{\prime}\right)}\right\rangle$: T4 (Ball/Frere/Tytgat 95)
e systematic approach? Other channels?
a get better control over hadronic parameters from lattice?

Backup Slides

G Parity

G parity is the generalisation of C parity to multiplets of particles.
C parity applies only to neutral systems; in the pion triplet, only π^{0} has a definite C parity. Generalise to G parity such that

$$
\mathcal{G}\left(\begin{array}{c}
\pi^{+} \\
\pi^{0} \\
\pi^{-}
\end{array}\right)=\eta_{G}\left(\begin{array}{c}
\pi^{+} \\
\pi^{0} \\
\pi^{-}
\end{array}\right)
$$

Since G parity is applied to a whole multiplet, charge conjugation has to see the multiplet as a neutral entity. Thus, only multiplets with an average charge of 0 will be eigenstates of G.

G is conserved by strong interactions. One has

$$
G(\pi)=+1, G(\rho)=-1 .
$$

G Parity of Operators

$\bar{q} \gamma_{\mu} G_{\alpha \beta} q: \quad G\left(\bar{q} \gamma_{\mu} q\right)=-1, G\left(G_{\alpha \beta}\right)=-1 \quad \Rightarrow$ G-even
$\bar{q} \gamma_{\mu} \gamma_{5} G_{\alpha \beta} q: G\left(\bar{q} \gamma_{\mu} \gamma_{5} q\right)=+1, G\left(G_{\alpha \beta}\right)=-1 \Rightarrow$ G-odd

