Models for Leading Twist DAs Patricia Ball

IPPP, Durham

DA06, Durham Sep 2806

What do we know about T2 DAs?

Standard procedure: construct model for ϕ as truncated conformal expansion:

$$
\phi\left(u, \mu^{2}\right) \approx 6 u(1-u)\left(1+\sum_{1}^{n_{\max }} a_{n}\left(\mu^{2}\right) C_{n}^{3 / 2}(2 u-1)\right)
$$

e for $\pi, \eta_{8}, \rho, \omega, \phi$: odd a_{i} vanish due to G-parity
e $n_{\text {max }}$ typically 2 or 4
e model closed under renormalisation, obtain correct limit for $\mu \rightarrow \infty$, i.e. asymptotic DA $6 u(1-u)$
e constrain $a_{2,4}^{\pi}$ from experimental data for $\pi \mathrm{EM}$ and $\gamma \gamma^{*} \rightarrow \pi$
(see talk by N. Stefanis)
e or calculate $a_{1,2}^{\pi, K, \ldots}$ from non-perturbative methods (QCD sum rules/lattice)

Why can one truncate?

Actual observable is convolution integral

$$
\int_{0}^{1} d u \phi(u) T(u)
$$

with pertubatively calculable amplitude $T(u)$:
contributions from large-order a_{n} "washed out" for "smooth" T due to oscillatory behaviour of $C_{n}^{3 / 2}$:
(a) $\int d u \phi(u) \sqrt{u} \sim \sum \frac{1}{n^{3}} a_{n}$: strong suppression of a_{n}

Why can one truncate?

Actual observable is convolution integral

$$
\int_{0}^{1} d u \phi(u) T(u)
$$

with pertubatively calculable amplitude $T(u)$:
contributions from large-order a_{n} "washed out" for "smooth" T due to oscillatory behaviour of $C_{n}^{3 / 2}$:
(b) $\int d u \phi(u) \ln u \sim \sum \frac{1}{n^{2}} a_{n}$: strong suppression of a_{n}

Why can one truncate?

Actual observable is convolution integral

$$
\int_{0}^{1} d u \phi(u) T(u)
$$

with pertubatively calculable amplitude $T(u)$:
contributions from large-order a_{n} "washed out" for "smooth" T due to oscillatory behaviour of $C_{n}^{3 / 2}$:
(c) $\int d u \phi(u) \frac{1}{u} \sim \sum(-1)^{n} a_{n}$: no suppression!

Why can one truncate?

Actual observable is convolution integral

$$
\int_{0}^{1} d u \phi(u) T(u)
$$

with pertubatively calculable amplitude $T(u)$:
contributions from large-order a_{n} "washed out" for "smooth" T due to oscillatory behaviour of $C_{n}^{3 / 2}$:
(d) $\int d u \phi(u) \frac{1}{u^{2}} \rightarrow \infty$: diverges independently of a_{n}

Why can one truncate?

Actual observable is convolution integral

$$
\int_{0}^{1} d u \phi(u) T(u)
$$

with pertubatively calculable amplitude $T(u)$:
contributions from large-order a_{n} "washed out" for "smooth" T due to oscillatory behaviour of $C_{n}^{3 / 2}$:
(d) $\int d u \phi(u) \frac{1}{u^{2}} \rightarrow \infty$: diverges independently of a_{n}

Truncated conformal expansion OK for $T \sim(\sqrt{u}, \ln u)$, but not necessarily for $1 / u$! (And certainly not for $1 / u^{2}$.)

Models beyond Conformal Expansion

Define

$$
\Delta \equiv \frac{1}{6} \int d u \frac{\phi(u)+\phi(1-u)}{u}=\sum_{n} a_{2 n}
$$

"worst case scenario" with no suppression of higher a_{n}
e features in non-leptonic B decays and $\gamma \gamma^{*} \rightarrow \pi$
Idea (Ball/Talbot 05): define model for ϕ in terms of

1. $\Delta \equiv \sum_{\text {even }} a_{n}$ (constrained to be 1.2 ± 0.2 at $\mu=1.2 \mathrm{GeV}$, for π from $\gamma \gamma^{*} \rightarrow \pi$)
2. power-like fall-off behaviour of a_{n} in $n(a>1, b>0$ arbitrary):

$$
a_{n}=\frac{1}{(n / b+1)^{a}} \quad \text { or } \quad a_{n}=\frac{(-1)^{n / 2}}{(n / b+1)^{a}}
$$

Models beyond Conformal Expansion

Series in Gegenbauers can be summed explicitly:

$$
\phi_{a, b}^{ \pm}(\Delta)=6 u \bar{u}+\frac{\Delta-1}{\Delta_{a, b}^{ \pm}-1}\left(\tilde{\phi}_{a, b}^{ \pm}(u)-6 u \bar{u}\right), \quad \text { valid for } a>1 \text { and } b>0
$$

with

$$
\tilde{\phi}_{a, b}^{+}(u)=\frac{3 u \bar{u}}{\Gamma(a)} \int_{0}^{1} d t(-\ln t)^{a-1}\left(f\left(2 u-1, t^{1 / b}\right)+f\left(2 u-1,-t^{1 / b}\right)\right)
$$

f : generating function of Gegenbauer polynomials:

$$
\begin{aligned}
f(\xi, t) & =\frac{1}{\left(1-2 \xi t+t^{2}\right)^{3 / 2}}=\sum_{n=0}^{\infty} C_{n}^{3 / 2}(\xi) t^{n}, \\
\Delta_{a, b}^{+} & =\left(\frac{b}{2}\right)^{a} \zeta(a, b / 2), \quad \Delta_{a, b}^{-}=\left(\frac{b}{4}\right)^{a}\{\zeta(a, b / 4)-\zeta(a, 1 / 2+b / 4)\}
\end{aligned}
$$

Models beyond Conformal Expansion

(Ball/Talbot 05)

How does it work?

e similar to parametrisation of parton distribution functions in DIS:
e choose suitable model defined at low scale in terms of a few parameters
e use RG scaling to get PDF at higher scales
e fit model parameters to experimental results
e evolution equation: $\mu^{2} \frac{\partial}{\partial \mu^{2}} \phi\left(u, \mu^{2}\right)=\int_{0}^{1} d v V\left(u, v, \mu^{2}\right) \phi\left(v, \mu^{2}\right)$; kernel V known to 2-loop accuracy for $\pi, \rho_{\|}$(Mikhailov/Radyushkin 85) and 1-loop accuracy for ρ_{\perp} (Ball/Talbot 05)
e relation between $\left(a_{2}, a_{4}\right)$ and (Δ, a) is one-to-one (at a fixed scale μ) (see p.5): difference in resulting observables/convolutions is, if nothing more, estimate of truncation error of conformal expansion
e experimental data: far fewer than in DIS...

Application: $f_{+}^{B \rightarrow \pi}(0)$ from LCSRs

Solid: positive sign a_{n}
Dashed: alternating sign a_{n}

Models for odd a_{n}, normalised to a_{1}

$$
\psi_{c}^{ \pm}(u)=a_{1}\left(\frac{3}{2}\right)^{c} \tilde{\psi}_{c}^{ \pm}(u) \quad(c \text { is power of fall-off })
$$

with $\tilde{\psi}_{c}^{+}(u)=\frac{3 u \bar{u}}{\Gamma(c)} \int_{0}^{1} d t(-\ln t)^{c-1}(f(2 u-1, \sqrt{t})-f(2 u-1,-\sqrt{t}))$

$$
\tilde{\psi}_{c}^{-}(u)=\frac{3 u \bar{u}}{i \Gamma(c)} \int_{0}^{1} d t(-\ln t)^{c-1}(f(2 u-1, i \sqrt{t})-f(2 u-1,-i \sqrt{t}))
$$

Summary \& Conclusions

e alternative to truncated conformal expansion based on 2 parameters for symmetric part of $\phi(u)$:
a first inverse moment
e power of fall-off of $a_{2 n}$
e and two parameters for antisymmetric part of $\phi(u)$:
e a_{1}
e power of fall-off of $a_{2 n+1}$
e closed form at fixed low-energy scale, use evolution equation to go to higher scales
a deliverables: fast and safe numerical code for solution of evolution equation
e desirables 1: two-loop evolution kernel for ρ_{\perp}
e desirables 2: fix parameters from fits to experimental data

