Models for Leading Twist DAs Patricia Ball

IPPP, Durham

DA06, Durham Sep 28 06

What do we know about T2 DAs?

Standard procedure: construct model for ϕ as truncated conformal expansion:

$$\phi(u,\mu^2) \approx 6u(1-u) \left(1 + \sum_{1}^{n_{\max}} a_n(\mu^2) C_n^{3/2}(2u-1)\right)$$

• for π , η_8 , ρ , ω , ϕ : odd a_i vanish due to G-parity

- $n_{\rm max}$ typically 2 or 4
- model closed under renormalisation, obtain correct limit for $\mu \to \infty$, i.e. asymptotic DA 6u(1-u)
- constrain $a_{2,4}^{\pi}$ from experimental data for π EM and $\gamma\gamma^* \to \pi$

(see talk by N. Stefanis)

• or calculate $a_{1,2}^{\pi,K,...}$ from non-perturbative methods (QCD sum rules/lattice) (talks Thu afternoon)

Actual observable is convolution integral

$$\int_0^1 du\,\phi(u) T(u)$$

with pertubatively calculable amplitude T(u):

(a)
$$\int du \phi(u) \sqrt{u} \sim \sum \frac{1}{n^3} a_n$$
: strong suppression of a_n

Actual observable is convolution integral

$$\int_0^1 du\,\phi(u) T(u)$$

with pertubatively calculable amplitude T(u):

(b)
$$\int du \phi(u) \ln u \sim \sum \frac{1}{n^2} a_n$$
: strong suppression of a_n

Actual observable is convolution integral

$$\int_0^1 du\,\phi(u) T(u)$$

with pertubatively calculable amplitude T(u):

(c)
$$\int du \phi(u) \frac{1}{u} \sim \sum (-1)^n a_n$$
: no suppression

Actual observable is convolution integral

$$\int_0^1 du\,\phi(u) T(u)$$

with pertubatively calculable amplitude T(u):

(d)
$$\int du \, \phi(u) \, \frac{1}{u^2} \to \infty$$
: diverges independently of a_n

Actual observable is convolution integral

$$\int_0^1 du\,\phi(u) T(u)$$

with pertubatively calculable amplitude T(u):

contributions from large-order a_n "washed out" for "smooth" T due to oscillatory behaviour of $C_n^{3/2}$:

(d)
$$\int du \phi(u) \frac{1}{u^2} \to \infty$$
: diverges independently of a_n

Truncated conformal expansion OK for $T \sim (\sqrt{u}, \ln u)$, but not necessarily for 1/u! (And certainly not for $1/u^2$.)

Models beyond Conformal Expansion

Define

$$\Delta \equiv \frac{1}{6} \int du \frac{\phi(u) + \phi(1-u)}{u} = \sum_{n} a_{2n};$$

"worst case scenario" with no suppression of higher a_n

• features in non-leptonic B decays and $\gamma\gamma^* \to \pi$

Idea (Ball/Talbot 05): define model for ϕ in terms of

- **1.** $\Delta \equiv \sum_{\text{even}} a_n$ (constrained to be 1.2 ± 0.2 at $\mu = 1.2 \text{ GeV}$, for π from $\gamma \gamma^* \to \pi$)
- 2. power-like fall-off behaviour of a_n in n (a > 1, b > 0 arbitrary):

$$a_n = \frac{1}{(n/b+1)^a}$$
 or $a_n = \frac{(-1)^{n/2}}{(n/b+1)^a}$

Models beyond Conformal Expansion

Series in Gegenbauers can be summed explicitly:

$$\phi_{a,b}^{\pm}(\Delta) = 6u\bar{u} + \frac{\Delta - 1}{\Delta_{a,b}^{\pm} - 1} \left(\tilde{\phi}_{a,b}^{\pm}(u) - 6u\bar{u} \right), \quad \text{valid for } a > 1 \text{ and } b > 0$$

with

$$\tilde{\phi}_{a,b}^+(u) = \frac{3u\bar{u}}{\Gamma(a)} \int_0^1 dt (-\ln t)^{a-1} \left(f(2u-1,t^{1/b}) + f(2u-1,-t^{1/b}) \right)$$

f: generating function of Gegenbauer polynomials:

$$f(\xi,t) = \frac{1}{(1-2\xi t+t^2)^{3/2}} = \sum_{n=0}^{\infty} C_n^{3/2}(\xi)t^n,$$

$$\Delta_{a,b}^+ = \left(\frac{b}{2}\right)^a \zeta(a,b/2), \quad \Delta_{a,b}^- = \left(\frac{b}{4}\right)^a \left\{\zeta(a,b/4) - \zeta(a,1/2+b/4)\right\}$$

Models beyond Conformal Expansion

How does it work?

- similar to parametrisation of parton distribution functions in DIS:
 - choose suitable model defined at low scale in terms of a few parameters
 - use RG scaling to get PDF at higher scales
 - fit model parameters to experimental results
- evolution equation: $\mu^2 \frac{\partial}{\partial \mu^2} \phi(u, \mu^2) = \int_0^1 dv V(u, v, \mu^2) \phi(v, \mu^2);$ kernel *V* known to 2-loop accuracy for π, ρ_{\parallel} (Mikhailov/Radyushkin 85) and 1-loop accuracy for ρ_{\perp} (Ball/Talbot 05)
- relation between (a₂, a₄) and (Δ, a) is one-to-one (at a fixed scale μ) (see p.5): difference in resulting observables/convolutions is, if nothing more, estimate of truncation error of conformal expansion
- experimental data: far fewer than in DIS...

Application: $f_{+}^{B \to \pi}(0)$ from LCSRs

Solid: positive sign a_n

Dashed: alternating sign a_n

Models for odd a_n , normalised to a_1

$$\psi_c^{\pm}(u) = a_1 \left(\frac{3}{2}\right)^c \tilde{\psi}_c^{\pm}(u) \quad (c \text{ is power of fall-off})$$
with $\tilde{\psi}_c^+(u) = \frac{3u\bar{u}}{\Gamma(c)} \int_0^1 dt (-\ln t)^{c-1} \left(f(2u-1,\sqrt{t}) - f(2u-1,-\sqrt{t})\right)$
 $\tilde{\psi}_c^-(u) = \frac{3u\bar{u}}{i\Gamma(c)} \int_0^1 dt (-\ln t)^{c-1} \left(f(2u-1,i\sqrt{t}) - f(2u-1,-i\sqrt{t})\right)$

Summary & Conclusions

- alternative to truncated conformal expansion based on 2 parameters for symmetric part of $\phi(u)$:
 - first inverse moment
 - power of fall-off of a_{2n}
- and two parameters for antisymmetric part of $\phi(u)$:
 - *a*₁
 - power of fall-off of a_{2n+1}
- closed form at fixed low-energy scale, use evolution equation to go to higher scales
- deliverables: fast and safe numerical code for solution of evolution equation
- desirables 1: two-loop evolution kernel for ρ_{\perp}
- desirables 2: fix parameters from fits to experimental data