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What do we know about T2 DAs?

Standard procedure: construct model for φ as truncated conformal
expansion:

φ(u, µ2) ≈ 6u(1 − u)

(

1 +

nmax
∑

1

an(µ2)C3/2
n (2u− 1)

)

for π, η8, ρ, ω, φ: odd ai vanish due to G-parity

nmax typically 2 or 4

model closed under renormalisation, obtain correct limit for
µ→ ∞, i.e. asymptotic DA 6u(1 − u)

constrain aπ
2,4 from experimental data for π EM and γγ∗ → π

(see talk by N. Stefanis)

or calculate aπ,K,...
1,2 from non-perturbative methods (QCD sum

rules/lattice) (talks Thu afternoon)
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Why can one truncate?

Actual observable is convolution integral

∫

1

0

duφ(u)T (u)

with pertubatively calculable amplitude T (u):

contributions from large-order an “washed out” for “smooth” T due to

oscillatory behaviour of C3/2
n :

(a)
∫

duφ(u)
√
u ∼

∑ 1

n3
an : strong suppression of an

O – p.2



Why can one truncate?

Actual observable is convolution integral

∫

1

0

duφ(u)T (u)

with pertubatively calculable amplitude T (u):

contributions from large-order an “washed out” for “smooth” T due to

oscillatory behaviour of C3/2
n :

(b)
∫

duφ(u) ln u ∼
∑ 1

n2
an : strong suppression of an

O – p.2



Why can one truncate?

Actual observable is convolution integral

∫

1

0

duφ(u)T (u)

with pertubatively calculable amplitude T (u):

contributions from large-order an “washed out” for “smooth” T due to

oscillatory behaviour of C3/2
n :

(c)
∫

duφ(u)
1

u
∼
∑

(−1)nan : no suppression!

O – p.2



Why can one truncate?

Actual observable is convolution integral

∫

1

0

duφ(u)T (u)

with pertubatively calculable amplitude T (u):

contributions from large-order an “washed out” for “smooth” T due to

oscillatory behaviour of C3/2
n :

(d)
∫

duφ(u)
1

u2
→ ∞ : diverges independently of an

O – p.2



Why can one truncate?

Actual observable is convolution integral

∫

1

0

duφ(u)T (u)

with pertubatively calculable amplitude T (u):

contributions from large-order an “washed out” for “smooth” T due to

oscillatory behaviour of C3/2
n :

(d)
∫

duφ(u)
1

u2
→ ∞ : diverges independently of an

Truncated conformal expansion OK for T ∼ (
√
u, lnu), but not

necessarily for 1/u! (And certainly not for 1/u2.)
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Models beyond Conformal Expansion

Define

∆ ≡ 1

6

∫

du
φ(u) + φ(1 − u)

u
=
∑

n

a2n ;

“worst case scenario” with no suppression of higher an

features in non-leptonic B decays and γγ∗ → π

Idea (Ball/Talbot 05): define model for φ in terms of

1. ∆ ≡
∑

even
an (constrained to be 1.2 ± 0.2 at µ = 1.2 GeV, for π from γγ∗ → π)

2. power-like fall-off behaviour of an in n (a > 1, b > 0 arbitrary):

an =
1

(n/b+ 1)a
or an =

(−1)n/2

(n/b+ 1)a

– p.3



Models beyond Conformal Expansion

Series in Gegenbauers can be summed explicitly:

φ±a,b(∆) = 6uū+
∆ − 1

∆±
a,b − 1

(

φ̃±a,b(u) − 6uū
)

, valid for a > 1 and b > 0

with

φ̃+

a,b(u) =
3uū

Γ(a)

∫

1

0

dt(− ln t)a−1
(

f(2u− 1, t1/b) + f(2u− 1,−t1/b)
)

f : generating function of Gegenbauer polynomials:

f(ξ, t) =
1

(1 − 2ξt+ t2)3/2
=

∞
∑

n=0

C3/2
n (ξ)tn ,

∆+

a,b =

(

b

2

)a

ζ(a, b/2), ∆−
a,b =

(

b

4

)a

{ζ(a, b/4) − ζ(a, 1/2 + b/4)}
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Models beyond Conformal Expansion
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How does it work?

similar to parametrisation of parton distribution functions in DIS:
choose suitable model defined at low scale in terms of a few
parameters
use RG scaling to get PDF at higher scales
fit model parameters to experimental results

evolution equation: µ2 ∂

∂µ2
φ(u, µ2) =

∫

1

0

dv V (u, v, µ2)φ(v, µ2);

kernel V known to 2-loop accuracy for π, ρ‖ (Mikhailov/Radyushkin 85)

and 1-loop accuracy for ρ⊥ (Ball/Talbot 05)

relation between (a2, a4) and (∆, a) is one-to-one (at a fixed
scale µ) (see p.5): difference in resulting
observables/convolutions is, if nothing more, estimate of
truncation error of conformal expansion

experimental data: far fewer than in DIS. . .
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Application: fB→π
+ (0) from LCSRs
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Models for odd an, normalised to a1

ψ±
c (u) = a1

(

3

2

)c

ψ̃±
c (u) (c is power of fall-off)

with ψ̃+
c (u) =

3uū

Γ(c)

∫

1

0

dt(− ln t)c−1
(

f(2u− 1,
√
t) − f(2u− 1,−

√
t)
)

ψ̃−
c (u) =

3uū

iΓ(c)

∫

1

0

dt(− ln t)c−1
(

f(2u− 1, i
√
t) − f(2u− 1,−i

√
t)
)
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Summary & Conclusions

alternative to truncated conformal expansion based on 2
parameters for symmetric part of φ(u):

first inverse moment
power of fall-off of a2n

and two parameters for antisymmetric part of φ(u):
a1

power of fall-off of a2n+1

closed form at fixed low-energy scale, use evolution equation to
go to higher scales

deliverables: fast and safe numerical code for solution of
evolution equation

desirables 1: two-loop evolution kernel for ρ⊥
desirables 2: fix parameters from fits to experimental data
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