NLO, HIGGS AND OTHER THEORY ISSUES: WORKSHOP CLOSING TALK

Dieter Zeppenfeld Karlsruhe Institute of Technology (KIT)

Bundesministerium für Bildung und Forschung

Theory Experiment Interplay at the LHC, April 8–9, 2010, RHUL

- Higgs + 2 Jets
- NLO QCD
- VBFNLO
- Conclusions

Tensor structure of the *HVV* **coupling**

Most general *HVV* vertex $T^{\mu\nu}(q_1, q_2)$

$$T^{\mu\nu} = a_1 g^{\mu\nu} + a_2 (q_1 \cdot q_2 g^{\mu\nu} - q_1^{\nu} q_2^{\mu}) + a_3 \varepsilon^{\mu\nu\rho\sigma} q_{1\rho} q_{2\sigma}$$

The $a_i = a_i(q_1, q_2)$ are scalar form factors

Physical interpretation of terms:

SM Higgs
$$\mathcal{L}_I \sim H V_\mu V^\mu \longrightarrow a_1$$

loop induced couplings for neutral scalar

CP even $\mathcal{L}_{eff} \sim H V_{\mu\nu} V^{\mu\nu} \longrightarrow a_2$

CP odd $\mathcal{L}_{eff} \sim HV_{\mu\nu}\tilde{V}^{\mu\nu} \longrightarrow a_3$

Must distinguish a_1 , a_2 , a_3 experimentally

Define azimuthal angle between jet momenta j_+ and j_- via

$$\varepsilon_{\mu\nu\rho\sigma}b^{\mu}_{+}j^{\nu}_{+}b^{\rho}_{-}j^{\sigma}_{-} = 2p_{T,+}p_{T,-}\sin(\phi_{+}-\phi_{-}) = 2p_{T,+}p_{T,-}\sin\Delta\phi_{jj}$$

- $\Delta \phi_{ii}$ is a parity odd observable
- $\Delta \phi_{jj}$ is invariant under interchange of beam directions $(b_+, j_+) \leftrightarrow (b_-, j_-)$

Work with Vera Hankele, Gunnar Klämke and Terrance Figy: hep-ph/0609075

Signals for CP violation in the Higgs Sector

Position of minimum of $\Delta \phi_{jj}$ distribution measures relative size of CP-even and CP-odd couplings. For

 $a_1 = 0,$ $a_2 = d \sin \alpha,$ $a_3 = d \cos \alpha,$

 \implies Minimum at $-\alpha$ and $\pi - \alpha$

Heavy quark loop induces effective *Hgg* vertex:

$$\begin{aligned} \mathbf{CP} - \mathbf{even}: & i\frac{m_Q}{v} \to \mathcal{L}_{eff} = \frac{\alpha_s}{12\pi v} H \ G^a_{\mu\nu} G^{\mu\nu,a} \\ \mathbf{CP} - \mathbf{odd}: & -\frac{m_Q}{v} \gamma_5 \to \mathcal{L}_{eff} = \frac{\alpha_s}{8\pi v} A \ G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} = \frac{\alpha_s}{16\pi v} A \ G^a_{\mu\nu} G^a_{\alpha\beta} \varepsilon^{\mu\nu\alpha\beta} \end{aligned}$$

Azimuthal angle between tagging jets probes difference

- Use gluon fusion induced Φ_{jj} signal to probe structure of Hgg vertex
- Measure size of coupling (requires NLO corrections for precision)
- Find **cuts** to enhance gluon fusion over VBF and other backgrounds

 \implies Study by Gunnar Klämke in $m_Q \rightarrow \infty$ limit (hep-ph/0703202, PhD thesis, and paper in preparation, with Michael Rauch)

Gluon fusion signal and backgrounds

Signal channel (LO):

- $pp \rightarrow Hjj$ in gluon fusion with $H \rightarrow W^+W^- \rightarrow l^+l^- \nu \bar{\nu}$, $(l = e, \mu)$
- $m_H = 160 \,\mathrm{GeV}$

dominant backgrounds:

- W^+W^- -production via VBF (including Higgs-channel): $pp \rightarrow W^+W^-jj$
- top-pair production: $pp \rightarrow t\bar{t}, t\bar{t}j, t\bar{t}jj$ (N. Kauer)
- QCD induced W^+W^- -production: $pp \rightarrow W^+W^-jj$

applied inclusive cuts (minimal cuts):

• 2 tagging-jets

 $p_{Tj} > 30 \,\text{GeV}, \qquad |\eta_j| < 4.5$

• 2 identified leptons

 $p_{Tl} > 10 \,{
m GeV}, \qquad |\eta_l| < 2.5$

• separation of jets and leptons

 $\Delta \eta_{jj} > 1.0$, $R_{jl} > 0.7$

process	σ [fb]
$\text{GF } pp \to H + jj$	115.2
$VBF \ pp \rightarrow W^+W^- + jj$	75.2
$pp ightarrow tar{t}$	6832
$pp ightarrow tar{t} + j$	9518
$pp ightarrow tar{t} + jj$	1676
$QCD \ pp \to W^+W^- + jj$	363

Characteristic distributions

Separation of VBF *Hjj* signal from QCD background is much easier than separation of gluon fusion *Hjj* signal

Selection continued

- b-tagging for reduction of top-backgrounds. (CMS Note 06/014)
 - (η, p_T) dependent tagging efficiencies (60% 75%) with 10% mistagging probability
- <u>selection cuts:</u>

 $p_{Tl} > 30 \,\text{GeV}, \qquad M_{ll} < 75 \,\text{GeV}, \qquad M_{ll} < 0.44 \cdot M_T^{WW}, \qquad R_{ll} < 1.1,$

Results

process	σ [fb]	events/ 30fb^{-1}
$GF pp \to H + jj$	31.5	944
$VBF pp \rightarrow W^+W^- + jj$	16.5	495
$pp \rightarrow t\bar{t}$	23.3	699
$pp \rightarrow t\bar{t} + j$	51.1	1533
$pp \rightarrow t\bar{t} + jj$	11.2	336
$QCD pp \to W^+W^- + jj$	11.4	342
Σ backgrounds	113.5	3405

$\Rightarrow \mathbf{S}/\sqrt{\mathbf{B}} \approx \mathbf{16.2 \ for} \ 30 \ \mathrm{fb}^{-1}$

$\Delta \Phi_{jj}$ -Distribution in gluon fusion: WW case

Fit to Φ_{jj} -distribution with function $f(\Delta \Phi) = N(1 + A\cos[2(\Delta \Phi - \Delta \Phi_{max})] - B\cos(\Delta \Phi))$

fit of the background only : $A = 0.069 \pm 0.044$ and $\Delta \Phi_{max} = 64 \pm 25$ (mean values of 10 independent fits of data for $L = 30 f b^{-1}$ each)

$\Delta \Phi_{jj}$ -Distribution: CP violating case

CP-mixture: equal CP-even and CP-odd contributions $A = 0.153 \pm 0.037$ $\Delta \Phi_{max} = 45.6 \pm 7.3$

Dieter Zeppenfeld theory conclusions 10

Higgs + 2 Jets in Gluon Fusion, $H \rightarrow \tau \tau \rightarrow \ell^+ \ell^- \nu \bar{\nu}$

- this channel has not been studied so far
- interesting for SM Higgs (≈ 120 GeV) and SUSY scenario with large tan β ($m_H \approx m_A \gtrsim 150$ GeV)
- x-section times branching ratio of ≈ 50 fb looks promising (SM)
- has potential for study of Higgs CP-properties

- Study of signal and SM backgrounds for $m_H = 120$ GeV case (simple cut based analysis)
- same for one MSSM scenario $m_A = 200$ GeV, tan $\beta = 50$ Questions:
- How many signal and background events are there after cuts (what's the statistical significance)
- What are the prospects of CP-measurements via jet-jet azimuthal angle correlation

finite detector resolution

The detector has a finite resolution. The measured jet energy and missing transverse energy have large uncertainties. Parameterization (from CMS NOTE 2006/035, CMS NOTE 2006/036):

Jets :

$$\frac{\Delta E_j}{E_j} = \left(\frac{a}{E_{Tj}} \oplus \frac{b}{\sqrt{E_{Tj}}} \oplus c\right)$$

	а	b	С
$\eta_j < 1.4$	5.6	1.25	0.033
$1.4 < \eta_j < 3$	4.8	0.89	0.043
$\eta_j > 3$	3.8	0	0.085

Leptons :

$$\frac{\Delta E_{\ell}}{E_{\ell}} = 2\%$$

Missing p_T :

$$\Delta \not p_x = 0.46 \cdot \sqrt{\sum E_{Tj}}$$

SM Higgs with 120 GeV mass

inclusive cuts

 $p_{T,jets} > 30 \,\text{GeV}, \quad p_{T,\ell} > 10 \,\text{GeV}, \quad |\eta_j| < 4.5, \quad |\eta_\ell| < 2.5, \quad \Delta \eta_{jj} > 1.0, \quad \Delta R_{j\ell} > 0.7,$

cross sections for inclusive cuts for signal and background

process	σ [fb]	events / 600fb^{-1}
$GF pp \rightarrow H + jj \rightarrow \tau \tau jj$	11.283	6770
$\text{GF } pp \to A + jj \to \tau \tau jj$	25.00	15002
$VBF pp \rightarrow H + jj \rightarrow \tau \tau jj$	5.527	3316
QCD $pp \rightarrow Z + jj \rightarrow \tau \tau jj$	1652.8	991700
$VBF pp \rightarrow Z + jj \rightarrow \tau \tau jj$	15.70	9418
$pp \rightarrow t\bar{t}$	6490	3893900
$pp \rightarrow t\bar{t} + j$	9268	5560890
$pp \rightarrow t\bar{t} + jj$	1629	977263
QCD $pp \rightarrow W^+W^- + jj$	334.2	200540
VBF $pp \rightarrow W^+W^- + jj$	24.78	14871

Distributions

selection cuts

a b-veto was applied to reduce the top backgrounds.

 $R_{\ell\ell} < 2.4$, $p_T > 30 \,\text{GeV}$, $m_{\ell\ell} < 80 \,\text{GeV}$, $110 \,\text{GeV} < m_{\tau\tau} < 135 \,\text{GeV}$, $0 < x_i < 1$

process	σ [fb]	events / 600fb^{-1}
$\text{GF } pp \rightarrow H + jj \rightarrow \tau \tau jj$	4.927	2956
GF $pp \rightarrow A + jj \rightarrow \tau \tau jj$	11.43	6860
$\text{VBF } pp \rightarrow H + jj \rightarrow \tau \tau jj$	2.523	1514
QCD $pp \rightarrow Z + jj \rightarrow \tau \tau jj$	27.62	16573
VBF $pp \rightarrow Z + jj \rightarrow \tau \tau jj$	0.475	285
$pp ightarrow tar{t}$	3.86	2316
$pp ightarrow tar{t} + j$	8.84	5306
$pp ightarrow tar{t} + jj$	3.8	2283
QCD $pp \rightarrow W^+W^- + jj$	1.48	887
VBF $pp \rightarrow W^+W^- + jj$	0.147	88
Σ backgrounds	48.84	29300

for cp-even higgs: $S/\sqrt{B} \approx 17$ (600 fb⁻¹) this corresponds to: $S/\sqrt{B} \approx 5$ (50 fb⁻¹) for cp-odd higgs: $S/\sqrt{B} \approx 40$ (600 fb^{-1}) this corresponds to: $S/\sqrt{B} \approx 5$ (10 fb^{-1})

$H \rightarrow \tau \tau$ case: $\Delta \Phi_{jj}$ -distribution with backgrounds

Fit to Φ_{jj} -distribution with function $f(\Delta \Phi) = N(1 + A\cos[2(\Delta \Phi)] - B\cos(\Delta \Phi))$

Improvements for multijet situation: Jeppe Andersen

Large probability for additional jets between most forward and backward jets (of $E_T > 40$ GeV)

Define $\Delta \Phi_{jj}$ in terms of jet clusters on either side of Higgs

Quality of $\Delta \Phi_{jj}$ correlation largely preserved in multijet situation

Strong rapidity ordering

Alternative rapidity cuts on jets:

 $min\{|y_j - y_H|\} > y_{sep}$ instead of $\Delta y = |y_{j_1} - y_{j_2}| > 3$

little effect on significance of azimuthal correlations once backgrounds are taken into account

Progress on calculation tools

- Alexander Belyaev: tutorial on Calchep great tree level tool for studying SM processes and beyond
- Frank Krauss: progress on Sherpa
- Chris White: $t\bar{t}$ vs Wt production
- Mark Rodgers: how to calculate multileg loops with GOLEM impressive tool for calculating pentagons and hexagons applications to *ZZj* production and neutralino pair production
- Darren Forde: automated loop calculations with Blackhat Application: W + 3 jets and Z + 3 jets
- Giulia Zanderighi: *W* + 3 jets at NLO Phenomenological studies

Scale choice in *W* + 3 **Jet events at LHC: Blackhat...**

Consider E_T distribution of second jet (Darren Forde)

very large NLO scale dependence for $\mu = x \cdot E_{TW}$ Caution: Small scale dependence with $\mu_0 = H_T$ gives underestimate of NLO error ... and using Rocket science

Jet *E*_{*T*} distributions of two leading jets (Giulia Zanderighi)

Blackhat uses $\mu_0 = E_{TW}$: no sign for huge NLO corrections? Avoid large K-factors in distributions by choosing local scale in LO results (inspired by k_T clustering)

Originally: NLO QCD predictions for vector boson fusion processes at the LHC:

 $qq \rightarrow qqH$ Han, Valencia, Willenbrock (1992); Figy, Oleari, DZ (2003); Campbell, Ellis, Berger (2004)

• Higgs coupling measurements

 $qq \rightarrow qqZ$ and $qq \rightarrow qqW$

- $Z \rightarrow \tau \tau$ as background for $H \rightarrow \tau \tau$
- measure central jet veto acceptance at LHC

 $qq \rightarrow qqWW, qq \rightarrow qqZZ, qq \rightarrow qqWZ$

Jäger, Oleari, Bozzi, DZ: hep-ph/0603177,

Oleari, DZ: hep-ph/0310156

hep-ph/0604200, hep-ph/0701105, arXiv:0907.0580

- qqWW is background to $H \rightarrow WW$ in VBF
- underlying process is weak boson scattering: $WW \rightarrow WW$, $WW \rightarrow ZZ$, $WZ \rightarrow WZ$ etc.

$qq \rightarrow qqVV$: 3 weak bosons on a quark line

- NLO corrections to qq→qqVV contain all loops with a virtual gluon attached to a quark line with one, two or three weak bosons
- Crossing and replacing one quark line by a lepton line yields *qq̄*→*VVV* production processes with leptonic decays of the weak bosons
- Recycle virtual contributions from NLO corrections to VBF
- Decompose calculation into modules which can be used in different NLO calculations

Extending VBFNLO: *VVV* and *VVj* **Production at NLO QCD**

New processes implemented in 2008 release of VBFNLO:

Triple weak boson production: VVV = W[±]W[∓]W[±], W⁺W[−]Z and W[±]ZZ with leptonic decay of the weak bosons and full H→WW and H→ZZ contributions Work in collaboration with V. Hankele, S. Prestel, C. Oleari and F. Campanario

New processes already available for future releases:

- $W^+W^-\gamma$ and $ZZ\gamma$ production with leptonic decay of weak bosons Work in collaboration with G. Bozzi and F. Campanario
- $W^{\pm}\gamma j$ production (with W leptonic decay and final state photon radiation) Work in collaboration with C.Englert, F. Campanario and M. Spannowsky

Code is available at http://www-itp.particle.uni-karlsruhe.de/~vbfnloweb

VVV Production: Motivation

- Standard Model background for SUSY processes with multi-lepton + p_T signature
- Possibility to obtain information about quartic electroweak couplings.

• QCD corrections to $pp \rightarrow VVV + X$ on experimentalist's wishlist:

[The QCD, EW, and Higgs Working Group: hep-ph/0604120]

process $(V \in \{Z, W, \gamma\})$	relevant for
1. $pp \rightarrow VV$ jet	$t\bar{t}H$, new physics
2. $pp \rightarrow t\bar{t}b\bar{b}$	$t\bar{t}H$
3. $pp \rightarrow t\bar{t} + 2$ jets	$t\bar{t}H$
4. $pp \rightarrow VVb\bar{b}$	$VBF \rightarrow H \rightarrow VV, t\bar{t}H$, new physics
5. $pp \rightarrow VV + 2$ jets	$VBF \rightarrow H \rightarrow VV$
6. $pp \rightarrow V + 3$ jets	various new physics signatures
7. $pp \rightarrow VVV$	SUSY trilepton

Example: Contributions to *WWZ* **production**

- All resonant and non-resonant matrix elements as well as spin correlations of final state leptons and Higgs contribution included.
- Interference terms due to identical particles in the final state have been neglected.
- All fermion mass effects neglected. ($H\tau\tau$ -coupling = 0)

1-loop matrix elements and real emission matrix elements

Three different topologies:

- I Vertex correction proportional to Born matrix element.
- II Maximally 4-point integrals appear.
- III Up to five external legs (Pentagons):
 - Two independent calculations.
 - Numerically stable results with Denner Dittmaier method.

- Two different classes: final state gluon and initial state gluon.
- Each of them consists of several hundred Feynman-Graphs.
- Soft and collinear singularities subtracted with Catani-Seymour presription

qqVVV **amplitude: pentline corrections**

Virtual corrections involve up to pentagons

The external vector bosons correspond to $V \rightarrow l_1 \bar{l}_2$ decay currents or quark currents

The sum of all QCD corrections to a single quark line is simple

$$\mathcal{M}_{V}^{(i)} = \mathcal{M}_{B}^{(i)} \frac{\alpha_{s}(\mu_{R})}{4\pi} C_{F} \left(\frac{4\pi\mu_{R}^{2}}{Q^{2}}\right)^{\epsilon} \Gamma(1+\epsilon)$$

$$\left[-\frac{2}{\epsilon^{2}} - \frac{3}{\epsilon} + c_{\text{virt}}\right]$$

$$+ \widetilde{\mathcal{M}}_{V_{1}V_{2}V_{3},\tau}^{(i)} (q_{1},q_{2},q_{3}) + \mathcal{O}(\epsilon)$$

- Divergent terms sum to Born sub-amplitude
- Use amplitude techniques to calculate finite remainder of virtual amplitudes

Denner-Dittmaier reduction of pentagon tensors is stable: indication of numerical problems for less than 0.2% of phase space points

Virtual corrections

Born sub-amplitude is multiplied by same factor as found for pure vertex corrections \Rightarrow when summing all Feynman graphs the divergent terms multiply the complete M_B

Complete virtual corrections

$$\mathcal{M}_V = \mathcal{M}_B F(Q) \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} + \frac{4\pi^2}{3} - 8 \right] + \widetilde{\mathcal{M}}_V$$

where $\widetilde{\mathcal{M}}_V$ is finite, and is calculated with amplitude techniques. The interference contribution in the cross-section calculation is then given by

$$2\operatorname{Re}\left[\mathcal{M}_{V}\mathcal{M}_{B}^{*}\right] = 2\left|\mathcal{M}_{B}\right|^{2}F(Q)\left[-\frac{2}{\epsilon^{2}}-\frac{3}{\epsilon}+\frac{4\pi^{2}}{3}-8\right] + 2\operatorname{Re}\left[\widetilde{\mathcal{M}}_{V}\mathcal{M}_{B}^{*}\right]$$

The divergent term, proportional to $|M_B|^2$, cancels against the subtraction terms which have the same structure as for single *W* or *Z* production.

Input variables for LHC phenomenology

- **PDFs**: CTEQ6L1 at LO and CTEQ6M, $\alpha_S(m_Z) = 0.118$ at NLO.
- Cuts and Masses:

 $p_{T_{\ell}} > 10 \text{ GeV}, \qquad |\eta_{\ell}| < 2.5, \qquad m_{\ell^+ \ell^-} > 15 \text{ GeV}, \qquad m_H = 120 \text{ GeV}.$

• **Renormalization- and Factorization Scale**: $\mu_F = \mu_R = 3 m_W$.

Following results are for electrons and/or muons in the final state:

 \implies Combinatorial factor of 8/4 for the W⁺W⁻Z/ZZW[±] production compared to three different lepton families in the final state.

Scale Dependence

- At LO only small μ_F -dependence, no $\alpha_s(\mu_R)$.
- At NLO scale dependence is dominated by $\alpha_s(\mu_R)$.
- Real emission contribution drives overall scale dependence at NLO.

Higgs mass dependence

Z W H Z W

- Cross section reflects behavior of $BR(H \rightarrow ZZ)$
- K-factor is reduced by Higgs contribution.
 K-factor for *pp*→*ZH* production is about K = 1.3
 ⇒ Different *K*-factor for resonance production (see also *Wt* case, talk by Chris White)

Differential cross section and K-factor for the highest-*p_T***-lepton**

- K-factor increases with transverse momentum (p_T) by almost a factor of 2.
- Strong phase space dependence due to events with high p_T jets recoiling against the leptons.
- Veto on jets with $p_T > 50$ GeV leads to fairly flat K-factor.

Extension to $W^+W^-\gamma$ and $ZZ\gamma$ **Production**

New elements of calculation:

- Different infrared divergence structure of individal loop integrals but same final virtual expressions in terms of finite parts of *C*_{*ij*}, *D*_{*ij*}, and *E*_{*ij*} functions
- Photon isolation from jets for real emission contributions: use Frixione isolation

$$\Sigma_{i} E_{T_{i}} \theta(\delta - R_{i\gamma}) \leq p_{T_{\gamma}} \frac{1 - \cos \delta}{1 - \cos \delta_{0}} \quad \text{(for all } \delta \leq \delta_{0})$$

• Final state photon radiation becomes important: adapt phase space to this

Scale dependence of integrated cross sections

Variation of μ_F , μ_R about $\mu_0 = m_{WW\gamma}$

- Behaviour similar to *VVV* production: LO scale variation much smaller than NLO correction
- NLO scale dependence largely due to real emission contributions \implies jet veto will reduce it
- Box and pentagon contributions (\tilde{M}_V terms) are quite small: 3% and < 1% of total

NLO Corrections to Distributions: p_T of photon

Strong phase space dependence of K-factors (depends on LO scale choice)

NLO QCD Corrections to *W* γj **Production**

• Provide NLO QCD corrections including leptonic *W* decay, e.g.

 $pp \rightarrow e^+ \nu_e \gamma j$, $pp \rightarrow e^- \bar{\nu}_e \gamma j$

- Sizable cross section at LHC (1.2 pb) and Tevatron (15 fb) for p_{Tj} , $p_{T\gamma} > 50$ GeV and separation cuts (later)
- Measurement of anomalous WWγ coupling: veto on jets in Wγ events requires good knowledge of cross section and distributions: want NLO
- Photon isolation à la Frixione probed at NLO level

- Initial and final state photon radiation. Final radiation from lepton is important
- Virtual corrections up to pentagons
- External gluon already at tree level \implies *nonabelian* boxes with three gluon vertex
- Larger number of subtraction terms

Virtual Corrections: nonabelian Contributions

Example: non-abelian extension of boxline graphs. Keep modular structure of calculation

Combine to two boxline amplitudes $M_V(12)$ and $M_V(21)$ and new nonabelian combination

$$M_V(12, boxline) = (C_F - \frac{1}{2}C_A) \sum_{i=1,4} A_i(12)$$

$$M_V(na) = \frac{1}{2}C_A \left(A_2(12) + A_4(12) + A_3(21) + A_4(21) \right) + C_A \left(A_5 + A_6 + A_7 \right)$$

Scale dependence: LHC and Tevatron

Identify lepton, photon and one or more jets with k_T -algorithm (D = 0.7)

 $p_{Tj,\gamma} \ge 50 \,\text{GeV}\,, \quad |y_j| \le 4.5\,, |\eta_\gamma| \le 2.5, \qquad p_{Tl} \ge 20 \,\text{GeV}\,, \quad |\eta_l| \le 2.5$

2.5 $R_{l,\gamma}, R_{l,j} > 0.2$

Frixione isolation of photons with $\delta_0 = 1$

Cross sections are for $W \rightarrow e \nu_e$ only

Scale variation at LHC for $\mu_F = \mu_R = 2^{\pm 1} \cdot 100 \text{ GeV}$: $\pm 11\%$ at LO reduced to $\pm 7\%$ at NLO Almost flat behaviour for veto of additional jets of $p_T > 50$ GeV should be taken as accidental and not as a measure of NLO uncertainties

NLO corrections to distributions

lepton photon separation

- Clear shape changes of distributions when going from LO to NLO
- Average K-factor of 1.4 at LHC is significantly larger than LO scale variation

Conclusions

- Much progress on Higgs physics, Monte Carlo tools, NLO corrections in recent years
- We are all ready for LHC data

Thank you, Nikolas, for a great workshop