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Overview

• Automating NLO computations & 
BlackHat.

• Example:  W+3 jets using BlackHat
+Sherpa.

• Results.



NLO?

• Increased precision beyond Leading Order (LO).

• Gives better control of shapes and 
normalization's of distributions.

• Reduced scale dependance, e.g. for W+jets,

No. of Jets LO NLO

1 16% 7%

2 30% 10%

3 42% 12%



• Leading order requires only a single piece -
Tree amplitudes. Many tools exist for this.

• Three pieces are needed for a complete 
NLO computation,

• Real piece - Tree amplitudes with one 
extra leg. Re-use leading order tools.

• Virtual piece - One-loop amplitudes with 
the same number of legs.

NLO Calculations



• The virtual term has been considered the 
bottleneck in such computations up until 
now.

• Only recently has significant progress been 
made on automating the computation of 
one-loop amplitudes.
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• Automated One-loop amplitude codes using new 
techniques- 

• BlackHat [Berger, Bern, Dixon, DF, Febres Cordero, Gleisberg, Ita, 

Kosower, Maître], 

• CutTools [van	
  Harmeren,	
  Bevilacqua,	
  Czakon,	
  Papadopoulos,	
  

Pi8au,	
  Worek], 

• Rocket [Ellis,	
  Giele,	
  Kunszt,	
  Melnikov,	
  Zanderighi],

• Others [Lazopoulos],	
  [Giele,	
  Kunszt,  Winter].

• Feynman diagram approach : Golem [Binoth, Guillett, 
Heinrich, Pilon, Reiter]+[Guffanti, Karg, Kauer]

NLO Calculations



• Real and virtual terms are separately IR divergent. Numerically 
subtract IR singularities from real and add back to the virtual. 
Procedure now automated. 

• Catani-Seymour Dipoles

• Automation within Sherpa	
  [Gleisberg,	
  Krauss]

• MadDipole (in MadGraph)	
  [Frederix,	
  Gehrmann,	
  Greiner]

• Others	
  [Seymour,	
  Tevlin],	
  [Hasegawa,	
  Moch,	
  Uwer].

• Frixione,	
  Kunzst	
  and	
  Signer	
  subtracNon,	
  MadFKS	
   [Frederix, Frixione, 
Maltoni, Stelzer]

Automated IR Subtractions
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The Goal

A
n (1,2,...,n), A

n (1,2,...
• Automation & Mass 

Production 

• Many processes required at 
the LHC. Use computers 
to do the tedious work!

• BlackHat - an automated 
package for computing 
one-loop amplitudes.



• NLO computation Goal: pick an automatic 
tree-level code, a one-loop level code and a 
subtraction code, combine to get full NLO 
result. 

• Great flexibility. Combine one-loop code with 
your other favorite tools.

• Choose the best tool for each part.

• Reduces the sources of potential error. 

Automation



• How does this work in practice? 

• Example : BlackHat + Sherpa.

BlackHat+Sherpa
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• How does this work in practice? 

• Example : BlackHat + Sherpa.
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The Role of Sherpa

• We use this at the parton level only  
(AMEGIC++). 

• Event generation.

• Efficient phase space integration of the real 
and virtual terms.

• Automated Dipole subtraction.	
  [Catani, 
Seymour],	
  [Gleisberg,	
  Krauss]

[Gleisberg,	
  Hoeche,	
  Krauss,	
  Schoenherr,	
  Schumann,	
  Siegert,	
  Winter]



The Role of BlackHat

• Automated one-loop amplitude 
computation.

• Uses recent developments in unitarity & 
on-shell methods.

• Efficient computation of processes which 
would be much harder using Feynman 
diagram approaches.

• c++ framework.

 [Berger, Bern, Dixon, DF, Febres Cordero, Ita, Kosower, Maître, Gleisberg]



• Want to avoid using gauge dependent quantities, 
use only on-shell amplitudes.

• Unitarity: “Glue” together trees to produce loops.

• Efficient methods for computing trees lead to 
efficient computation of loops.

Unitarity & On-shell methods



One-loop Basis

Scalar coefficients we want
Use On-shell 

recursion or D-
Dimensional 

unitarity.

• Any one-loop amplitude can be decomposed into a 
standard basis of scalar integral functions,
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All One-loop 
basis integrals 

known. (e.g. [Ellis, 
Zanderighi])



• Generalized unitarity, cut the loop more than two 
times, use to compute these coefficients. [Britto, Cachazo, 
Feng] [DF] [BlackHat]

• Similarly rational terms via D-Dimensional unitarity 
[Giele, Kunszt, Melnikov] [Badger] [BlackHat] or On-shell recursion 
[Berger, Bern, Dixon, DF, Kosower].

• Alternatively use OPP. [Ossola,	
  Papadopoulos,	
  Pi8au] 

Computing Coefficients

d c b



BlackHat

• BlackHat is a numerical implementation of this.

• For massless particles and massive particles that do 
not enter the loop.

• Unitary approach completely general, will implement 
all massive particles in the future.

• Implements Binoth-Les Houches accord interface.  
Enables easy connection to external code.   



Results



W/Z+jets
• The W/Z+jets processes are important for

• SM physics (e.g. Higgs, tt and single top)

• Backgrounds to new physics.

• Luminosity determination.

• Much recent work,

• Full W+3 jets and Z+3 jets. [BlackHat] 

• Leading colour W+3 jets rescaled to account for sub-
leading colour. [Ellis,Melnikov,Zanderighi], [Melnikov,Zanderighi]



W+3 jets at the Tevatron
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W + 3 jets + X

BlackHat+Sherpa

LO scale dependence

ET
jet  >  20 GeV,  | jet |  <  2 

ET
e   >  20 GeV,   | e |   <  1.1

ET/     >  30 GeV,  MT
W  > 20 GeV

R   =   0.4   [siscone]

s   =  1.96 TeV

µR  =  µF  =  ET
W

• Good agreement with Tevatron data. (arXiv:0711.4044)

• Reduced scale dependance at NLO.

 [Berger, Bern, Dixon, DF, Febres Cordero, Ita, Kosower, Maître, Gleisberg]



W+3 jets at the 7 TeV LHC



W+3 jets at the 7 TeV LHC

Scale Choice 
is Important



Scale choices
• A perturbative computation contains a dependance 

upon unphysical renormalisation and factorization scales.

• Careful choice of scale to minimize large corrections 
due to dropping terms in the perturbative calculation.

• Gets complicated when we have many scales in the 
problem.

• Choose scale event by event, what should the functional 
form of this be?

• Why differ from the usual choice for Tevatron W 
studies?

µ = ET
W = MW

2 + pT (w)
2



Difficulties with scale choice

• Negative 
Differential Cross 
section.

• Large deviation 
between LO and 
NLO.

• Rapid growth of 
scale bands with ET.

• So this is a bad 
choice for NLO 
LHC studies.



Choosing the “Typical” Scale

• Compared to the Tevatron there is a much larger dynamic scale at 
the LHC, have jet ET’s much higher than MW.

• Consider “scale” of the W in different configurations,

• In (a) the W has a large pT and so ET is a good choice, but in (b) the 
W can have a low pT, so not a good choice.

• Total (partonic) transverse energy is a better choice here as it gets 
large in both regions. (Or invariant mass of the n jets [Bauer,Lange])

(b) is more 
favorable in the 

high ET region of 
the second jet

ĤT = ET , j
jet

j=1,2,3
∑ + ET

e + /ET



Alternative Scale Choices

• Reasonable scale choices give similar 
results for the shape.

µ = ĤT

µ =
1
4
M had

2 + Mw
2

[BlackHat]

[Bauer,Lange]



Comparing scale choices
NLO and LO much closer 

Reduced scale variation 
between µF/R/2↔2 µF/R

(accidentally narrower than 
“expected”)

Positive Differential Cross section.

Lesson, need to be careful with 
how we handle scale choice.
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Lesson, need to be careful with 
how we handle scale choice.

Relationship to “theoretical error”?



Z+3 Jets Scale dependence

• Improved scale dependence at NLO (more 
important at higher multiplicity)



Z+3 Jets at the Tevatron

• Reasonable agreement with 
D0 data [0903.1748].

• SISCone [Salam, Soyez] rather 
than D0 midpoint.

• Parton calculation corrected 
to Hadron level using 
experiment-provided table.

• Reduced scale dependence.



Z+3 Jets at the 7 TeV LHC

• Reduced artificially narrow 
scale variation band.

• Scale choice HT/2.

• Mild change of shape. 

• Can use W+3/Z+3 ratios to 
analyze missing ET+3 jets.



Shape changes at NLO

• Distributions can change 
at NLO e.g. ΔR12

• Additional radiation 
allows jets to move 
closer together at NLO.

• Alternatively to pure 
LO, use matrix element 
matching & showering 
(ME&TS) in SHERPA 
[Hoche, Huston, Maitre, 
Winter, Zanderighi]

• Need guidance from NLO. 
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W+/W- Asymmetry

• There is a strong high pT asymmetry in W+/W-, some asymmetry expected 
because of the dominant (at the LHC) qg initial state and u(x)/d(x) pdf differences.

• Not the same as low pT as seen at the Tevatron.

• Universal, seen at LO and in W+n jets n=1,2,3.

• Explained by predominantly left hand polarized W’s at large pT(W).

• Top quark pair production does not have this asymmetry. Useful for separating W
+n jets from top, possibly for new physics as well. 



Jet production ratios in Z+jets

• “Berends ratio”.

• Ratios of jets should have reduced sensitivity to systematics.

• Differential distributions contain more structure.
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Radiation Between Jets

• NLO Study of emission between jets associated with colorless 
object production. 

• Emission is approximately constant per unit of rapidity when 
tagged by largest η. (Similar result seen in [Anderson, Del Duca, White] 

[Anderson,Smillie])



Conclusion

• BlackHat - An automated one-loop computation 
package. Combine with Sherpa to produce NLO 
computations.

• Many new W+3 jet and Z+3 jet results.

• Care needed with scale choices.

• Improved understanding of Standard model 
processes, useful for new physics discovery.


