Chris White, IPPP Durham

Wt production at the LHC

Work done in collaboration with S. Frixione, E. Laenen, F. Maltoni, P. Motylinski, B. Webber

arXiv:0908.0631

Theory Experiment Interplay at the LHC - April 9 2010

Overview

What is the best description of Wt production?

- Single top production modes.
- Interference problem Wt and $t\bar{t}$.
- Comparison of different theoretical approaches.
- $H \rightarrow WW$ production.
- Outlook

Top physics

► Mass of top quark ≃ energy scale of electroweak symmetry breaking.

 \Rightarrow Top quark sector can be a sensitive probe of new physics effects.

- ► The LHC is a "top quark factory" can produce in tt̄ pairs, or singly (t or t̄).
- Single (anti-)top production particularly useful in probing electroweak interactions.

Single top production modes

- Three modes of single top production at LO s channel; t channel; Wt channel.
- Total LHC cross-section
 ~ 320pb (c.f.
 σ_{tī} ~ 830pb).
- s- and t-channel modes well understood theoretically; Wt less so.

Interference Problem

- At NLO, have virtual and real corrections to the LO Wt graphs.
- NLO real emission contributions to Wt production include:

- These graphs also contribute to tt
 production (at LO), with decay of the t
 .
- Give a large contribution when $m_{bW} \rightarrow m_t$.
- ▶ Thus at LO have well-defined $\sigma_{t\bar{t}}$ and σ_{Wt} , with $\sigma_{Wt} < \sigma_{t\bar{t}}$.
- At NLO, σ_{Wt} gets a huge correction! Due to contamination from tt

How do we get the best description of $Wt + t\bar{t}$ production?

Incoherent

- Consider Wt and tt as separate processes.
- Interference not present in the sum.
- ▶ Need a definition of *Wt*.
- Also need a way of measuring size of interference.

Coherent

- Consider only final states WWbb etc.
- Combine all diagrams, including interference.
- ► No longer makes sense to think of "Wt" or "tīt".
- NLO corrections to tt
 not
 included.

- Which description to use is equivalent to the question: Which is bigger - interference effects, or NLO corrections to tī?
- First, let's see examples of how to implement the above...

Incoherent description of Wt production

- Wt interferes with $t\bar{t}$ at NLO (for the former process).
- Any calculation of Wt at this order must give some prescription for defining it (Zhu, Campbell, Tramontano).
- A definition has also been given in an NLO + parton shower context (Frixione, Laenen, Motylinski, Webber, White).
- This has been implemented in MC@NLO.
- In fact there are two Wt definitions, whose difference measures the interference with tt.
- The definitions are called diagram removal (DR) and diagram subtraction (DS).

DR & DS - Summary Diagram Removal

- tt
 tremoved at amplitude level.
- Diagrams containing tt
 pair not included.
- Defined fully exclusively, at any order.

Diagram Subtraction

- tt
 tremoved at cross-section level.
- Based on narrow width approximation.
- Defined fully exclusively, at any order.
- Both definitions have been implemented in the MC@NLO program (latest release v3.3).
- Spin correlations also implemented (Frixione, Laenen, Motylinski, Webber).
- Can be used to test the accuracy of the incoherent approximation.

- There are two main contexts in which one needs to model Wt + tt.
- ► Firstly, when Wt production is a signal, and tt a (significant background).
- Secondly, when both Wt and tt
 are backgrounds to a third process e.g. H → WW.
- ▶ In both cases, accurate predictions are essential.
- Suggests we want to include NLO corrections to tt i.e. to use the incoherent approximation.
- Is this justified? Can find out by using DR and DS modes in MC@NLO.
- Let's consider Wt production and $H \rightarrow WW$ in turn.

Wt production as a signal

- Aim: To show that DR and DS give similar results for Wt production, when Wt signal cuts are used.
- We use the following basic cuts:
 - 1. Exactly one b jet ($p_T > 50$ GeV, $|\eta| < 2.5$). No other b jets with $p_T > 25$ GeV and $|\eta| < 2.5$.
 - 2. Exactly two light jets with $p_T > 25 GeV$ and $|\eta| < 2.5$. Also, 55 GeV $< m_{h\dot{p}} < 85$ GeV.
 - 3. Exactly one isolated lepton ($\Delta R < 0.4$ w.r.t. jets) with $p_T > 25$ GeV and $|\eta| < 2.5$.
 - 4. Missing transverse energy $E_T^{miss} > 25$ GeV.
- Cuts are fairly minimal results can only get better with more realistic analysis.
- Also, use a selection of b tagging efficiencies and light jet rejection rates.

Wt as a Signal - Results

Have evaluated DR and DS cross-sections for a variety of choices of *b*-tagging efficiency (*e_b*) and light jet rejection rate (*r_{lj}*):

eb	r _{lj}	σ_{Wt}^{DR}/pb	σ_{Wt}^{DS}/pb	$\sigma_{t\overline{t}}/{ m pb}$
1.0	10 ⁴	$1.206\substack{+0.039\\-0.017}$	$1.189\substack{+0.021\\-0.010}$	$5.61^{+0.74}_{-0.54}$
0.6	30	$0.717\substack{+0.020\\-0.014}$	$0.696\substack{+0.020\\-0.005}$	$4.29^{+0.45}_{-0.46}$
0.6	200	$0.748^{+0.014}_{-0.011}$	$0.726^{+0.014}_{-0.007}$	$4.36_{-0.42}^{+0.56}$
0.4	300	$0.505_{-0.009}^{+0.026}$	$0.494_{-0.008}^{+0.008}$	$3.31_{-0.37}^{+0.40}$
0.4	2000	$0.512\substack{+0.011\\-0.010}$	$0.503\substack{+0.001\-0.007}$	$3.35_{-0.38}^{+0.37}$

- DR and DS agree within scale variation uncertainty.
- ► Wt production cross-section larger than the scale variation uncertainty of tt̄ production.
- \Rightarrow *Wt* is indeed a well-defined signal!

Wt as a Signal - Results

Here we show the transverse momentum and pseudo-rapidity of the b jet passing the cuts.

 Confirms that interference is small locally in phase space.

Top production as a background - $H \rightarrow WW$

- ▶ If the Higgs mass is intermediate (150 GeV $\leq m_H \leq 180$ GeV), the only viable discovery channel is via decay to two W bosons.
- ► Top production (Wt+tt̄) is a significant background, as is non-resonant W pair production.
- Spin correlations can be used to reduce the backgrounds (Dittmar, Dreiner).
- It is clearly very important that estimates of the top production background are accurate.
- Can the incoherent approximation be used for Higgs signal cuts?

Higgs signal cuts

- ► Aim: Look at Wt+tt̄ production for Higgs signal cuts, and check that interference is small.
- We used the following (based on Anastasiou, Dissertori, Stockli):
 - 1. Two opposite sign leptons with $p_T > 25$ GeV and $|\eta| < 2.5$. Also, their invariant mass should satisfy 12 GeV< $m_{ll} < 40$ GeV.
 - 2. The azimuthal angle between the leptons should satisfy $\phi_{\rm II} < \pi/4.$
 - 3. Highest lepton p_T should be between 30 GeV and 55 GeV.
 - 4. Missing transverse energy $E_T^{miss} > 50 GeV$.
 - 5. No jets (b or light) with $p_T > 25$ GeV and $|\eta| < 2.5$.

Higgs signal cuts - results

• With these cuts, find:

Process	$\sigma_{\it NLO}/{ m fb}$
$H \rightarrow WW$	81.8 ±0.4
tŦ	12.25 ± 0.3
Wt (DR)	6.91 ± 0.06
Wt (DS)	6.89 ± 0.07

DR and DS results are identical within statistical uncertainties.

► Wt and tt̄ production backgrounds are comparable in size, and a significant fraction of the signal. Higgs signal cuts - results

 Here we show the transverse momentum and |pseudo-rapidity| of the lepton from the top.

 Again, interference is small locally in phase space.

16 / 26

Coherent approach

- We have seen that the incoherent approximation is justified for Wt production and $H \rightarrow WW$.
- There may still be cases, however, where neglecting interference with tt production is not justified.
- ► Furthermore, it is interesting to compare the MC@NLO calculation with a description in which all interference terms are explicitly included, but NLO *tt* corrections are not.
- Let's look at this in more detail...

$Wt + t\bar{t}$ - coherent description

- If interference cannot be neglected, it no longer makes sense to think of separate Wt and tt processes.
- Instead, one considers given final states.
- For $Wt + t\bar{t}$ production, it is easiest to work in a four flavour scheme (no initial state *b* quarks).
- Then the relevant final state is WWbb, and one has singly and doubly resonant diagrams:

Coherent Approach

- For a fair comparison with the MC@NLO approach, one can interface the tree-level diagrams with a parton shower.
- Matching (CKKM, MLM) is not needed in the four-flavour scheme at this order.
- We generated matrix elements using MadGraph, and interfaced these with HERWIG (same parton shower as MC@NLO).
- ► All interference effects are now explicitly included.
- How does the approach compare with the incoherent MC@NLO decription?

Comparison of coherent and incoherent approaches

- One way of comparing the two descriptions is to calculate total cross-sections and distributions for various signal cuts.
- ► If the K-factors (= σ^{NLO}/σ^{LO}) are different for different analysis cuts, then NLO is not a simple rescaling of the LO result.
- Also suggests that they should really be regarded as separate processes.
- Aswell as the Wt and H → WW cuts presented earlier, one may also consider top pair signal cuts:
 - 1. One electron or muon with $p_T > 20$ GeV.
 - 2. Missing transverse energy $E_T^{miss} > 20$ GeV.
 - 3. At least four jets with $p_T > 20$ GeV.
 - 4. At least three jets with $p_T > 40$ GeV.
 - 5. All leptons and jets to satisfy $|\eta| < 2.5$.

K factors for different cuts

- We obtain results for $Wt + t\bar{t}$ (or $WWb\bar{b}$) production for the three choices of cuts.
- For each choice ,the K-factor is defined as the ratio of the MC@NLO and (MADGRAPH+HERWIG) cross-sections.

Signal cuts	K-factor
Top pair	1.508 ± 0.012
Wt	1.345 ± 0.028
$H \rightarrow WW$	1.98 ± 0.07

- DR used for the Wt component in MC@NLO (DS gives the same within errors).
- K-factors are completely different!

Distributions

 Also some shape differences in distributions.

E.g. *p_T* and η of the final state lepton for *tt* cuts.

Discussion

- Have compared two calculations for $Wt + t\bar{t}$ production.
- One has NLO corrections to tt production, but no interference between Wt and tt.
- ► The other includes all interference, at the expense of NLO corrections to tt̄.
- The two descriptions are fundamentally different, in that the K-factors are different for different analysis cuts.
- Also differences in shapes of distributions.
- ► Suggests that *Wt* and *tt* should be regarded as separate processes where possible.
- ▶ NLO *tt* corrections are, in a well-defined sense, larger than interference effects.

Other processes

- Similar interference problems occur in other contexts.
- An obvious one is charged Higgs boson production in association with a top quark.
- One can use similar methods to the Wt case for analysing the impact of interference effects.
- ► H⁻t production has been implemented using the DR and DS definitions in MC@NLO (Weydert et. al.).

Sample results for H^-t production

Shown are the pt and y distributions for the charged Higgs.

 DR and DS agree with suitable cuts - thus incoherent approximation is valid.

Conclusions

- ► Have considered *Wt* production at the LHC.
- Non-trivial at NLO and beyond due to interference with top pair production.
- Either one cannot regard Wt and tt as separate processes, or one can add them incoherently - provided one can justify this.
- ▶ Have shown that for Wt and $H \rightarrow WW$ cuts, the incoherent approximation is justified.
- Comparison with a coherent approach shows that NLO corrections to tt are important.
- ► Need separate K-factors for Wt and tt̄.
 ⇒ Incoherent approximation should be used where possible.
- Similar conclusions hold for other processes.