CMS: Higgs search prospects at 7 TeV, 1 fb⁻¹

Andrey Korytov (for CMS Collaboration)

Stage for Higgs searches at LHC: current limits from LEP and Tevatron

CMS Projections for 7 TeV and 1 fb⁻¹

How did we start? - a look at the first data

- 100 pb⁻¹ by Nov 2010
- Nov 2010: heavy ions
- Dec-Jan: technical stop
- 1 fb⁻¹ by end of 2011
- 2012: commissioning for higher energy and higher luminosity (may take more than a year)

Stage for Higgs searches at LHC: current limits from LEP and Tevatron

CMS Projections for 7 TeV and 1 fb⁻¹

How did we start? - a look at the first data

LEP limits: not expected to change Tevatron in 2011: 2 TeV, <u>10</u> fb⁻¹ LHC run 2010-2011: 7 TeV, <u>1</u> fb⁻¹

Channels of prime interest are those that will allow us to further the Higgs sensitivity

M_v (GeV)

95% CL exclusion limits

LEP: m_H > 114.4 GeV

http://lephiggs.web.cern.ch/LEPHIGGS/

Tevatron: $m_H \neq 163-166 \text{ GeV}$

http://tevnphwg.fnal.gov/

 $\begin{array}{l} \text{EWK} + \text{LEP} + \text{Tevatron} \\ m_{\text{H}} \lesssim 160 \text{ GeV} \end{array}$

http://project-gfitter.web.cern.ch/project-gfitter/

LHC : Tevatron gg→H CS Ratio (m_H~160) ~20 VH CS Ratio (m_H~120) ~4

95% CL exclusion limit

mhmax scenario:

- least restrictive on the $(m_{_{\!\!A'}}\,tan\beta)$ plane given the LEP search limits
- M_{SUSY} =1 TeV, X_t =2 TeV, M_2 =200 GeV, M_3 =800 GeV, μ =+200 GeV

LHC : Tevatron gg \rightarrow bb Φ CS Ratio (m $_{\Phi}$ ~100) ~20

95% CL exclusion limits

Higgs search landscape as of today: Beyond SM/MSSM (1st example)

Fermiophobic Higgs

If the EWK symmetry breaking Higgs has nothing to do with fermion masses:

- SM Higgs limits at Tevatron evaporate
 - High mass: $gg \rightarrow h$, $h \rightarrow WW$ (decay mode is OK, but the production disappears)
 - Low mass: VH, $h \rightarrow bb$ (production is OK, but the decay mode disappears)
- Only one fermiophobic-specific Higgs search $h \rightarrow \gamma \gamma$ remains (also H and qqH, H \rightarrow WW)

(How about fermion masses? E.g., all this can be self-consistently accommodated in models with two doublets of Higgs fields)

Higgs search landscape as of today: Beyond SM/MSSM (2nd example)

Double-charged Higgs

- arises in models with extra higgs triplets
- strongly motivated, it allows for small neutrino masses

(an alternative to see-saw type mechanisms)

$m_H > 104-150$ GeV, depending on channel and assuming 100% BR

Stage for Higgs searches at LHC: current limits from LEP and Tevatron

CMS Projections for 7 TeV and 1 fb⁻¹

How did we start? - a look at the first data

- Projections to be shown are NOT new analyses done with 7 TeV MC samples and new detector simulation/reconstruction software
- We tried to strike the right balance: not too aggressive -- not too conservative
- Start out from public results at 14 TeV (int. luminosity from 1-30 fb⁻¹)
- Re-scale signal and bkgd event counts by the ratio of 7 TeV : 14 TeV cross sections and project for the integrated luminosity of 1 fb⁻¹
- No corrections for higher acceptance at smaller sqrt(s), up to ~20%
- No corrections for improvements in reconstruction (efficiencies, resolution)
- Modify systematic errors:
 - for backgrounds derived from control samples, scale as 1/sqrt(N)
 - other errors: assess whether to keep as is (e.g. theoretical errors) or inflate to correspond to a smaller data set
 - take into account error correlations
- Statistical analysis:
 - Use re-scaled event counts and re-evaluated systematic errors
 - Exclusions: Modified Frequentist (CL_s)
 - Significance: Profile Likelihood

Updates since 2006 for 14 TeV and 1 fb⁻¹

https://twiki.cern.ch/twiki/bin/view/CMS/PublicPhysicsResults

- H→WW PAS HIG-08/006 sensitivity improved wrt 2006
- H→ZZ PAS HIG-08/003 approx no changes in sensitivity
- VBF H→ττ PAS HIG-08/008
 fast loss of sensitivity [faster than 1/sqrt(L)]
 due to running out of signal events

<u>Bottom line</u>: depending on $m_{H'}$ forerunners remain the same, i.e. inclusive WW, ZZ, $\gamma\gamma$

PAS – Physics Analysis Summary

Sub-process	PTDR	now	tools used now
gg fusion	NLO	NNLO	HggTotal
VBF	NLO	NLO	VV2H
VH	NLO	NLO	V2HV
ttH	LO	LO	HQQ

Rescaling backgrounds

General case backgrounds

process	ECM=14TeV	ECM=10TeV	ECM=7TeV	comment
W->lnu DY(20-inf)->ll	3*20283.7 3*3259.7	3*14253.7 3*2323.6	3*9679.9 3*1606.6	MCFM NLO MCFM NLO
WW	112.5	71.4	42.9	MCFM NLO
WZ	51.0	31.4	18.3	MCFM NLO
ZZ	15.6	9.9	5.9	MCFM NLO
ttbar	918	415	165	MCFM NLO
Wt	56.1	26.0	10.5	MCFM NLO
tq-t_channel	244.6	130.5	62.8	MCFM NLO
tq-s_channel	11.9	7.6	4.6	MSTW 2008 NNLO
W(->lnu)+gamma	54.7*1.8	35.4*1.8	23.2*1.8	NLO k-Factor from Bauer
Z(->11)+gamma	17.5*1.8	11.3*1.8	7.3*1.8	NLO k-Factor from Bauer

Example of a special case background

Reference: HIG-08/006

Method:

- treat three final states μμ, ee, eμ separately
- two isolated leptons
- MET
- jet veto (0-jets bin)
- optimize in three mass ranges 120-140, 150-170, 180-200
- look for an excess above a cut on the MVA output [counting experiment]
- main backgrounds are assessed using data-driven techniques: WW, tt, W+jets, Drell-Yan

Neural Network Output

Kom to s (University of Florida)

Reference: HIG-2008/006

Method: Counting above a MVA-output cut

Three sub-channels: ee, µµ, eµ

Reference: HIG-2008/006 **Method:** Counting above a MVA-output cut Three sub-channels: 2*e*, 2μ, *e*μ

TEVATRON

CDF Run II Preliminar

102

CDF H→WW

High Mass ± 10

L = 5.3 fb

References:

HIG-08/003, NOTEs 2006/115, 2006/122, 2006/136

Method:

- four isolated leptons
- lepton impact parameter veto
- look for a 4I-resonance mass peak [counting in a sliding mass window]
- dominant background ZZ [assessed from data—Z events]

 $H \rightarrow ZZ^{(*)} \rightarrow ee \mu\mu$

TEVATRON

No H→ZZ public results, but...

4G (four-generation) Higgs limits from CDF+D0 *H→WW channel*

SM Higgs with 4 fermion generations

- $gg \rightarrow H$ cross section goes up by a factor $3^2=9$ (regardless of how heavy the 4th generation quarks are)
- expected exclusion limit up to 500 GeV

Reference: NOTE-2006/112

Method:

- two isolated photons [no categories]
- look for γγ-resonance mass peak [counting in a sliding mass window]
- bkgd is assessed from sidebands

14 TeV, 30 fb⁻¹

Reference: NOTE-2006/112 Method: Counting in a mass window No photon categories

Note:

This projection does not rely on Higgs specific kinematics. So, one can view it as a generic $pp \rightarrow X \rightarrow \gamma \gamma$ search

Reference:

NOTE-2006/088, PAS HIG-08/008

Method:

VBF signature μ and counting events in a $\tau\tau$ -mass window

Consider example of $m_H = 135$

PTDR: 14 TeV and 30 fb⁻¹, signal=7.9, signal:bkgd ~ 4:1

PAS HIG-08/008 (re-optimized)

14 TeV and 1 fb⁻¹, signal=1.1, signal:bkgd ~ 1:10 **exclusion limit r~12**

Next year?

7 TeV and 1 fb⁻¹, signal drops by 50%, r will get worse (it will be far behind $r \sim 4$ for $H \rightarrow \gamma \gamma$)

This channel is certainly not a forerunner with early data...

α

T

rapidity gap

 $\circ \tau$

 τ

And there is one more problem with this channel...

Recently, it was realized that

the classical VBF signature

- two highest E_T jets in forward-backward directions
- and large rapidity gap $|\eta_{jet1}-\eta_{jet2}|$ with no jets in between (jet veto)

may have large phenomenological uncertainties for signal efficiency

For details:

C. Hackstein at HGF-Alliance-2009: HGF-Alliance "Physics at the Terascale" annual meeting 2009, 11-13 Nov 2009, DESY, Hamburg C. Hackstein at DPG-2010: Jahrestagung 2010 der DPG, Deutsche Physikalische Gesellschaft, 15-19 Mar 2010, Bonn University, Bonn

TEVATRON

SM H $\rightarrow \gamma\gamma$ exclusion r~4

Fermiophobic/SM ratios

Fermiophobic/SM (see plot on the right)

lose a factor of 10 in cross section [blue line] Gain a large factor in BR($H \rightarrow gg$) [black line] CS x BR is larger than that of SM up to 130 GeV

If we do nothing special for fermiophobic Higgs,

r~4 for SM Higgs (see left plot) implies that we can exclude fermiophobic Higgs with m~110 GeV (see right plot), which is better than Tevatron, comparable to the Combined LEP limit

Cross Section Ratios

References:

NOTE 2006/075 NOTE 2006/101 NOTE 2006/105

Method:

- isolated $\tau_{had}\tau_{\mu}$ $\tau_{had}\tau_{e}$ $\tau_{e}\tau_{\mu}$
- MET
- one b-tagged jet
- veto extra jets
- build ττ-mass using collinear approximation
- counting events in a sliding ττ–mass window [counting experiment]
- dominant backgrounds [assessed from data]
 - Z+bb/cc/jets
 - tt .

References: NOTEs 2006/075, 2006/101, 2006/105 **Method:** Counting in a $\tau\tau$ -mass window

Three sub-channels: $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$, $\tau_{e}\tau_{\mu}$

CDF note 9071, October 22, 2007

Stage for Higgs searches at LHC: current limits from LEP and Tevatron

CMS Projections for 7 TeV and 1 fb⁻¹

How did we start? - a look at the first data

J. Instrum. 5 (2010) T03008 J. Instrum. 5 (2010) T03007

Cosmic Ray Muon

CMS PAS PFT-10-001

Di-photon resonances

First steps with data: electrons

CMS PAS EGM-10-001

Electrons from conversions

Electron tracks are shown in purple, and their superclusters in pink in the ECAL. General tracks are in blue and tracker clusters (silicon strips) are shown by small squares.

CMS PAS PFT-10-001

Fake-tau rate vs jet p_T

CMS PAS JME-10-001

Three different algorithms for MET

- CaloMET: using calorimeter information only
- tcMET: HCal information is track-corrected
- pfMET: particle-flow information

Important: in Higgs analyses, typical MET is very moderate, tens of GeV

Agreement between MC and data in this range is quite remarkable

CMS PAS JME-10-002

With 7 TeV and 1 fb⁻¹ of data, CMS (and surely ATLAS) will be on the map for Higgs searches

CMS projections:

- SM discovery sensitivity: 160-170 GeV
- SM exclusion sensitivity: 145-190 GeV
- MSSM neutral Higgs discovery rich: down to $tan\beta \sim 20$ at low m_A
- MSSM neutral Higgs exclusion rich: down to $tan\beta \sim 15$ at low m_A
- MSSM light charged Higgs: production rate is higher than at Tevatron
- Beyond SM/MSSM: a number of opportunities are out there...

First look at data and running experience are very positive!