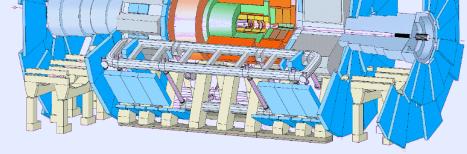


ATLAS Upgrade and the sLHC

- Planned luminosity upgrade of the LHC to the sLHC (10³⁵cm⁻²s⁻¹) in 2018 Why upgrade:
- Allow collection of up to 6000 fb⁻¹ of data
- Needed for precision measurements (couplings, particle properties)
- Studies of rare decays (FCNC, Higgs)
- <u>BUT:</u> in order to fully benefit from the increased luminosity, the existing performance of the ATLAS detector needs to be maintained.


Main challenges are:

- \rightarrow Higher radiation dose 10¹⁵n_{ed} cm⁻² for inner strip layers
- \rightarrow More charged particles in the tracking system

To maintain the resolution of the present ATLAS silicon tracking system we need: \rightarrow Finer segmentation

 \rightarrow leading to a high occupancy.

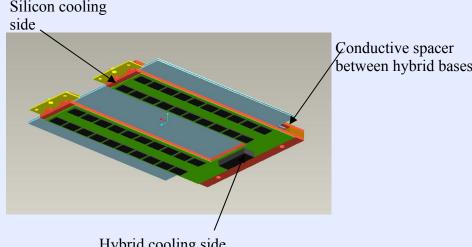
Curing:

Araldite leads to

clear degrading of

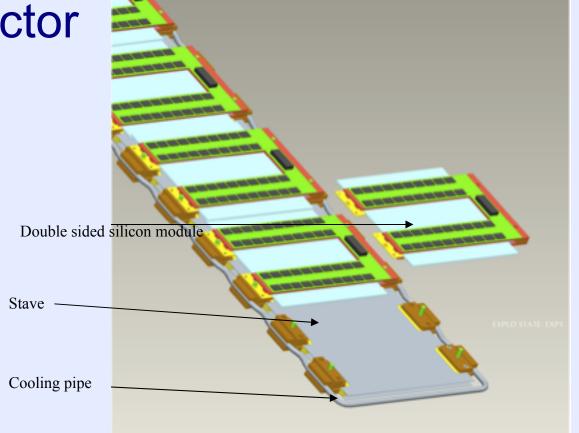
breakdown voltage

No differences in


behaviour seen for

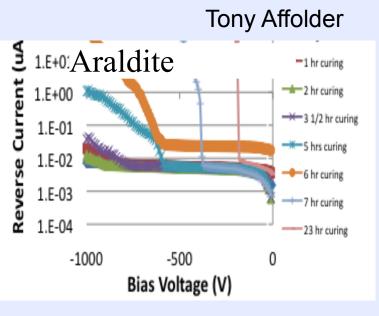
breakdown

 \rightarrow Factor of 10 improvement in radiation hardness


Stave Concept

- Upgrade for ATLAS Semiconductor Tracker (SCT) and Transition Radiation Tracker (TRT)
- Compact design
- Material and service reduction Dot
- Highly integrated design

- Double-sided silicon module
 Aluminum and TPG heat spreader
- 2-ended-cooling :

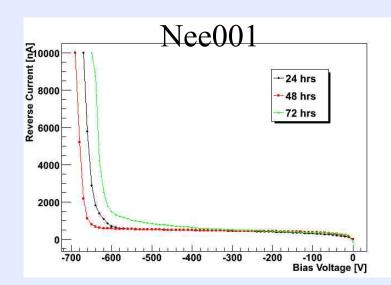


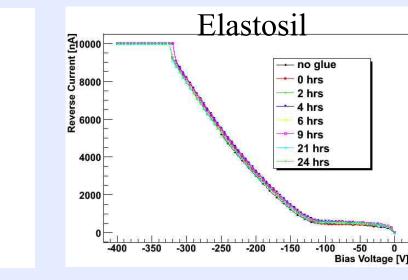
Nee001, Staystisk and Elastosil

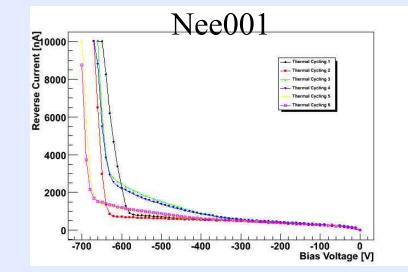
Thermal Cycling:

Thermal cycling from -20 to 60 °C Measurements taken at 20 °C

Glue Test Results


Staystik


- 4 hrs


6 hrs

- 8 hrs - 10 hrs

24 hrs

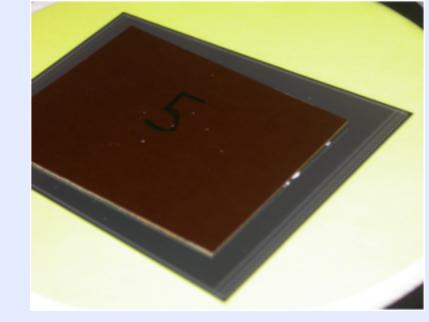
TPG Heat Spreader

Carbon cvCarbon hybrid base

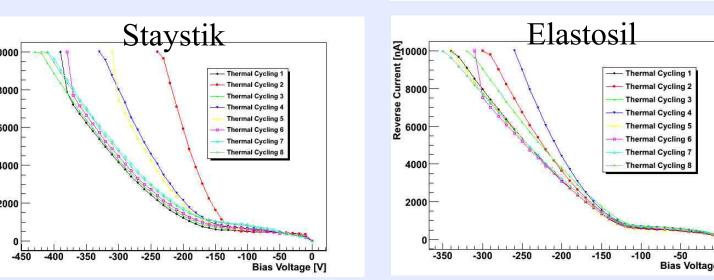
Kapton Hybrid

- Cooling flow for silicon cooling Precision Location Washer
- Cooling return for hybrid cooling
 Alumina location tab
- Design requires direct gluing on active Spacer tab side of detector:
 - \rightarrow Better heat transfer
 - \rightarrow Material reduction
- Never done so far. We need to understand:
- \rightarrow How does this affect the detector properties ?
- \rightarrow Is there a glue radiation hard enough for this purpose ?

Approach:

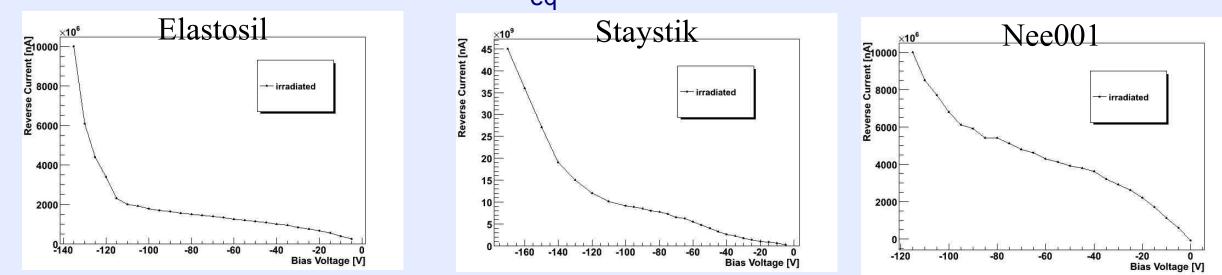

Use ATLAS SCT strip sensors (CiS):

Measure CV-IV curves:


- Before and after gluing
- During curing process
- After thermal cycling
- After 25 MeV proton irradiation at FZ Karlsruhe

Glues under test:

Pertinax is used to mimic hybrid, glue only on passivated region, kept away from bias ring



Visible differences are due to fluctuations in the humidity

Irradiation:

Sensors irradiated to 10¹⁵ n_{ed} cm⁻² over 1.5 cm wide area.

Measurements at < -40 °C show clear degrading for sensors glued with Staystik and Nee001, Elastosil leads to no differences in breakdown voltage

Conclusion and Outlook

No differences have been seen in breakdown voltage for Staystik, Nee001 and Elastosil during curing and thermal cycling
Irradiation shows strong degradation of breakdown voltage for Nee001
Gluing with Elastosil or Staystik exhibits no large differences after radiation
Further investigation needed to understand effects of radiation on the different glues

Staystik:Thermalconduction film	Nee001: Silicone glue	Elastosil: Siliconebasis	Araldite(Liverpool): •Epoxidbasis	
 low temperature application Bonding range: 125-200°C 	 24-48 hrs. cure under pressure of 2-3 kg/cm 	•24 hrs cure	• 24 hrs cure	
•Thermal conductivity : 0.25-0.3 W/mK	 Thermal conductivity : 0.24 W/mK 	 Thermal conductivity: 1.79 W/mk 	 Thermal conductivity: 0.87 W/mK 	
	■CMS, HeraB	 radiation hard 	• ATLAS Endcap/Barrel, CMS Endcap/Barrel	

• \rightarrow Staystik and Elastosil seem to be radiation hard enough and are suitable for gluing on the active side of the detector