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What is Gauge-Higgs Unification ? Where SUSY GHU can appear ? Natural way to break SUSY ?
4D spin 1 : ino :
gaug% — (A, As) — ﬁ%;g'” 0 In Orbifold SUSY GUTs With Radion Mediated SUSY breaking (RMSB) [2]
(see [1]) Radion T = field associated to extra dimension fluctuation.
Bottom-up : SUSY GUTs is motivated by couplings e L. _ L L
And with SUSY ? unification. The extra dimensions are motivated by GUT Compactification (1') = R implies SUSY breaking :
M problems : doublet-triplet splitting, GUT group breaking, FT O (radion)
(E, )\1,2, A ) proton decay. EFSO; ;é 0 (chira tor) with T 1__OW | po
L chiral compensator) wi — R
4D spin 1 : 4D spin 0': | 3W(R) 0T
gauge ~_ L/ Higgs Top-down : SUSY GUT with GHU can naturally come from 5
AH - 15 classes of heterotic strings model. AMSB contributions are generated at one-loop : O(F (p/ 3T )
()\17 ) (E+2A a)\Z)
[SUSY GUTs with Gauge-Higgs Unification and RMSB generically implies : =511 = ,uz -+ m%{ — /uz -+ m%{d at the SUSY breaking scale. }

5D complete realization : Gauge-Higgs sector SD complete realization : Matter sector

We take the 5D SUSY GUT with SU(6) GHU of [3]. The radius T of the 5th dimension As the gauge and Higgs fields, the matter fields are propagating in the bulk [3].

. o <T> — R~ M However they can have a 5D mass term which makes them confined on the branes.
SlollizEe] |9 £ Ul ORI MBS o GUT The usual 4D yukawas come from the overlap with the Higgs field. The more a field is
and break the SU(6) adjoint : confined, the less it is massive. Mixing angles appear as new parameters.
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In odd number of dimensions, a new term (Chern-Simons) generically appears [5]. It uge-Higgs .
was not taken into account in a previous study [4], whose conclusion was negative,due = T g o0 o T e -
to no electroweak symmetry breaking. For theory consistency, € > -1 agndc=0(1) T T N
T\2 2
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Only bulk matter couples to the SUSY breaking field. Consequently, the soft scalar

T 1 _ F11492¢ parameters will qualitatively have the same hierarchy as the yukawas. Roughly, the
M1/2 — 9R 1+c = 2R 1+4c third generation parameters are large, and the others are negligible.
Spectrum calculation Scans and constraints Check of assumptions
How to caleulate the spectrum of such model 7 In the complete realization, we scan over tan 5, M1/2 - and By computing the fundamental parameters, we can check
The pattern of inputs and constraints is different from other the two mixing angles 9 and ¢, . The spectrum is o ol , o
trained with th tical it EWSB CCB the hypothesis : the AMSB contributions are negligible, and

models. Usually, it and B are computed from the two constrained with theoretical consistency ( , NO , NO S i~ient is sti _

| Y | (COIMPUt tachyons), and with experiment. We use the mass bounds from the Chern-Simons coefficient is still non-zero, and of order
equation of the Higgs potential minimization : ’ _ - _ one.

LEP, the constraints from B-physics (20), and verify the

UQ _ % tan Zﬁ(m%{u tan 6 _ m%{d Cotﬁ _ M%) ?89_r1e1ement with relic density measurement from WMAP (30) - . | . . y \
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But in our model, &, Bt ,m%{u M py , are fixed at high scale. 0.0913 < Qh* < 0.1285 2 e THHF /
m““, . g 0.81
First solution : compute tan 5 and Mz at each iteration. But | | ~100; - - I / / / /
a fixed point algorithm on tan 5 is unstable. (An alternative is | | I | . | _150/ l i FoM g |
o use a dicholomy dlgorihm). 2 000 | I m ’ L. I &
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The inputs are then , / and soft scalar parameters.
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Spectrum and LHC signatures
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