Cosmo-03: Ambleside, 24 - 29 August 2003

Ultra High Energy Cosmic Rays: where we are and where we are going

Alan Watson University of Leeds, UK

Connecting Quarks with the Cosmos Eleven Science Questions for the New Century

National Research Report 2003 Committee on the Physics of the Universe (MS Turner - chair)

6. What are Nature's most energetic particles?

Gamma Rays, neutrinos and cosmic rays

"A full understanding of how these particles are produced and accelerated could shed light on the unification of nature's forces."

Key Questions about UHECR

- Energy Spectrum above 10¹⁹ eV?
- Mass Composition?
- Arrival Direction distribution?

Are there UHECR at Earth?

A primary interest is in establishing the existence, or otherwise, of the Greisen-Zatsepin-Kuzmin cut-off

$$p + \gamma_{2.7k} \rightarrow \Delta^+ \rightarrow p + \pi^0$$
 or
 $n + \pi^+$

If particles are observed > 5 x 10^{19} eV, then they must be local (GZK cut-off) where Local depends on energy:

>4 x 10 ¹⁹ eV	50% from within 130 Mpc
>10 ²⁰ eV	50% from within 20 Mpc

So ANISOTROPIES expected from nearby sources

IF CR> 10²⁰ eV exist, are the sources Astrophysical or do we need New Physics?

Super Heavy Dark Matter Relics in the Dark Halo of our Galaxy

Relics from Early Universe?

thanks to Angela Olinto

Cosmic Strings

Fluorescence light emitted isotropically from excited molecular nitrogen.

Detection by pmts allows determination of direction and particle number as function of atmospheric depth \Rightarrow calorimetric energy estimate.

The measurement techniques

Particle number and relative arrival times found with particle detectors

AGASA Akeno Giant Air Shower Array

To close in December 2003

▲TB45 ▲TB44 ANBANB4 ATB46 TB43 TB17 NB46 NB4 TB47 TB36 TB42 TB16 NB42NB41 ATB35 TB4 TB15TB14 NB26 NB11 TB32 TB21 TB11B12 **NB37** TB13 ANB36 ANB22 TB23 NB13 CTB27 AS 855 ANB33ANB23 TB34 **ANB34** S B54 **NB14** AB16 ANB24 SB42 ANB35 NB1 ANB1 AB15 AB14 2 5 B4 3 B4 **SB35** AB13 **SB34** S 85 AB12 AB23 S B3 B32 SB1 AB AB22 A634832 A843 SB12 SB13 AB21 AB24 AB33 AB55 AB54 S'B1 4 AB51 AB53 SB24 S B1 5 AB52 AB57 SB16 AS B29

111 scintillators + 27 muon det.

HiRes detector of fluorescence light

HiRes: Monocular Spectrum from fluorescence

HiRes: Stereo Spectrum

Very Preliminary

R. W. Springer et al. ICRC

- Still evaluating sources of systematic uncertainty
 - Energy scale
 - Fluorescence Yield
 - Atmospheric effects
 - Event by event correction for atmosphere to be implemented

AGASA: Small Scale Clustering

M. Teshima et al. ICRC2003

- 1 triplet + 6 doublets (2 triplets + 6 doublets with looser cut)
- Clustering for $E \sim 10^{19} eV$ and $\sim 5 \times 10^{19} eV$,
- Ratio of Cluster/All increases with E up to $5 \ge 10^{19} \text{eV}$
- Above GZK energy (5x10¹⁹eV) statistics too small

AGASA Angular Correlations

HiRes:small scale clustering search (mono)

- No significant clustering seen yet.
- "Bananas are harder than circles..."

in HiRes-I monocular dataset.

HiRes-I Monocular Data, E > 3 x 10¹⁹ eV

HiRes: small scale clustering (stereo)

Mass Composition is a crucial question

Muon Detection with AGASA array

Fe-initiated events will contain more muons.

Claim: Consistent with proton dominant component

Summary of recent mass composition claims

Model Uncertainties

An extreme comparison in composition studies with QGSJet:Knapp'03

Results so far suggest:

- Events with energies well beyond the GZK cut-off have been claimed by AGASA, Fly's Eye and HiRes
 BUT we are not sure of the fluxes
- The arrival directions seem rather isotropic
 BUT there may be clusters
- The mass composition is still very uncertain
- Major problem is that flux above 10²⁰ eV is ~1 km⁻² century⁻¹ sr⁻¹

Aims of the Auger Observatory

- To measure the properties of the highest energy cosmic rays with unprecedented precision
- 10 years x 3000 km² yields 300 -500 events >10²⁰ eV
- SOURCES? Two Observatories Necessary
- NATURE OF PRIMARIES

~250 PhD scientists: 15 countries: \$50M

Pampa Amarilla Site

Observatory Infrastructure

Office and CDAS building

Assembly building

Auger fluorescence detectors

Server Config

Histogram Display Event Display

Analysis procedures with the FD

this event: intial viewing angle 15°, i.e. large direct Cherenkov contribution iterative procedure, converges in <4 steps; suggested energy here 2e18 eV

Two more Auger fluorescence events

EA: 32 SD stations, 2 telescopes

ENGINEERING ARRAY

<u>Objective:</u> Test the performance of every component and system.
Data taking since December '01.
~80 hybrid triggers (Dec'01-Mar'02)

No expectation of science results

Carmen, Miranda and Los Leones

207116: zenith angle = 13°

FADC traces for #207116

193485: zenith angle = 76°

Comparison of Exposures

<u>AGASA</u>: ~1750 km² sr yr - closing in December 2003

HiRes I and II: each ~1470 km² sr yr

<u>Auger</u>, by end of 2004, assuming 70% efficiency and using events with zenith angles up to 60°

~ 1440 km² sr yr.

Also there will be fluorescence measurements in 10% of events giving energy calibration.

IF CR> 10²⁰ eV exist, are the sources Astrophysical or do we need New Physics?

Super Heavy Dark Matter Relics in the Dark Halo of our Galaxy

Relics from Early Universe?

thanks to Angela Olinto

Cosmic Strings

Photons and neutrino fluxes from Inclined Showers

Example: Photon limit at 10¹⁹ eV (Ave et al. Phys Rev Lett 2000)

M. Ave: 80°, proton at 10¹⁹ eV Details in Ave, Vazquez and Zas, Astroparticle Physics

Test of idea with data from Haverah Park

Ave et al. PRL 85 2244 2000

Haverah Park: Photon limit at 10¹⁹ eV < 40% (@95% CL)

AGASA: muon poor events

Gamma-ray fraction upper limits (@90%CL)

34% (>10¹⁹eV)

56% (>10^{19.5}eV)

MOST IMPORTANTLY: We understand how to deal with inclined showers.

60° < 0 < 80° AVE, HINTON, VAZQUEZ, WATSON «ZAS PRL 85. 2244, 2000

Concept of neutrino detection with shower array

PIERRF

Tau neutrino detection

Principle:

- Interaction length in the earth ~ 300 km at 10¹⁸ eV
- Tau time of flight ~ 50 km at 10¹⁸ eV
- 1° below horizon \Rightarrow 200 km of rock
- Shower maximum ~10 km after decay In practice $85^{\circ} < \theta_z < 95^{\circ}$ AUGER window: 10^{17} to 10^{20} eV

X.Bertou, P.Billoir, O.Deligny A.Letessier-Selvon

astro-ph/0104452v4 Accepted in Astropart. Phys.

App 17, 183, 2002

Neutrino Sensitivity of Auger Observatory

Extreme Universe Space Observatory

for Extremely High Energy Cosmic Ray Observation

At ICRC2003 10 oral + 18 posters - becoming a reality Phase A to Phase B within ESA

EUSO ~ 300 x AGASA ~ 10 x Auger EUSO (Instantaneous) ~3000 x AGASA ~ 100 x Auger

Expected Integrated Apertures

K. Arisaka (ICRC03)

Connecting Quarks with the Cosmos Eleven Science Questions for the New Century

What are Nature's most energetic particles?

Gamma Rays, neutrinos and cosmic rays

"A full understanding of how these particles are produced and accelerated could shed light on the unification of nature's forces."

I anticipate that great progress will have been made in answering this important question within the next 10 years, with first Auger science in 2 years.