Neutrino masses and mixings

Solar and atmospheric evidences

Completing oscillations.

Discovering neutrino masses (Majorana or Dirac?).

Connection with cosmology?

Alessandro Strumia, Cosmo 03

(I thank my ν collaborators F. Vissani, R. Barbieri, C. Cattadori, M. Cirelli, P. Creminelli, S. Davidson, N. Ferrari, F. Feruglio, S. Forte, P. Gambino, G. Giudice, M. Kachelrie β , G. Marandella, A. Notari, M. Raidal, A. Riotto, N. Rius, G. Signorelli, R. Tomas, J.W.F. Valle)

Present status

Anomaly	Solar	Atmospheric		
first hint	1968	1986		
confirmed	2002	1998		
evidence	9σ	17σ		
for	$ u_e ightarrow u_{\mu, au}$	$ u_{\mu} ightarrow u_{ au}$		
seen by	CI,2Ga,SK,SNO,KL	SK,Macro, K2K		
disappearance	seen	seen		
appearance	seen	partly seen		
oscillations	not yet	partly seen		
$\sin^2 2\theta$	0.86 ± 0.04	1.00 ± 0.04		
Δm^2	$(7.1 \pm 0.6) 10^{-5} \mathrm{eV}^2$	$(2.0^* \pm 0.4) 10^{-3} \mathrm{eV}^2$		
sterile?	5σ disfavoured	7σ disfavoured		

* recently revised by SK

- A reanalysis of Heidelberg-Moscow data claims $|m_{ee}| \sim eV$. Problems: 1.5σ at most
- **NuTeV** claims NC/CC ratio between ν_{μ} /iron couplings ~ 1% below SM Could be a QCD effect e.g. strange momentum asymmetry
- Events above the **GZK** could arise from $\nu_{\text{UHE}}\nu_{\text{CMB}} \rightarrow Z$ with $m_{\nu} \sim \text{eV}$ Energy calibration? Wait Auger.
- LSND claims $ar{
 u}_\mu o ar{
 u}_e$ with small heta and $\Delta m^2 \sim {
 m eV}^2$

Hard to analyze $(3 \div 7 \sigma)$ and hard to explain: best solution is 3+1, disfavoured by Bugey/SK, BBN and LSS (4 too heavy ν). Wait MiniBoone.

Interpretation(s)

Surely we saw violation of lepton flavour (absent in SM), likely due to oscillations induced by neutrino masses (absent in SM), presumably of Majorana type ($\Delta L = 2$), maybe induced by new physics around 10¹⁴ GeV (see-saw?)...

Assuming oscillations

Assuming flat Λ CDM and cte n_s

$$\begin{aligned} |\Delta m_{\rm atm}^2| &= (2.0 \pm 0.4) 10^{-3} \, {\rm eV}^2 \\ \sin^2 2\theta_{\rm atm} &= 1.00 \pm 0.04 \\ \Delta m_{\rm sun}^2 &= (7.1 \pm 0.6) 10^{-5} \, {\rm eV}^2 \\ \tan^2 \theta_{\rm sun} &= 0.45 \pm 0.06 \end{aligned}$$

 $h = 0.71 \pm 0.04$ $\Omega_m h^2 = 0.135 \pm 0.01$ $\Omega_b h^2 = 0.022 \pm 0.001$ $n_s = 0.98 \pm 0.04$

Scenario must be tested (doable) and concrete theory behind found (hard) SK ~100 G¥ WMAP ~100 M\$ LHC ~2000 M€ (G¥ ≈ M\$ ≈ M€)

Oscillations

Vacuum oscillations

Present evidences can be understood knowing vacuum oscillations of 2 ν :

$$P(\nu_e \to \nu_e) = 1 - S \sin^2 2\theta \qquad S = \sin^2 \frac{c^3}{\hbar} \frac{\Delta m^2 L}{4E} = \sin^2 1.27 \frac{\Delta m^2}{eV^2} \frac{L}{Km} \frac{\text{GeV}}{E}.$$

Need low E and big L to see this macroscopic quantum phenomenon

The information on the phase is lost: combine probabilities, not amplitudes

The atmospheric anomaly

The atmospheric anomaly

SK detects $\nu_{\ell}N \rightarrow \ell N$ distinguishing μ from e. In the multi-GeV sample $\vartheta_{\ell} \sim \vartheta_{\nu} \pm 10^{\circ} \qquad E_{\ell} \lesssim E_{\nu} \sim 3 \text{ GeV}$ Without oscillations $N_{\nu}(\cos \vartheta_{\text{zenith}})$ is up/down symmetric

No doubt that there is an anomaly

Atmospheric oscillations?

$$P_{ee} = 1$$
 $P_{e\mu} = 0$ $P_{\mu\mu} = 1 - \sin^2 2\theta_{atm} \sin^2 \frac{\Delta m_{atm}^2 L}{4E_{\nu}}$

•
$$\sin^2 2\theta_{\text{atm}} = 2\frac{N_{\uparrow}}{N_{\downarrow}} = 1 \pm 0.1$$
 i.e. $\theta_{\text{atm}} \sim 45$

• oscillatations begin around the horizontal $L \sim 1000 \, {\rm km}$:

$$\Delta m_{
m atm}^2 \sim rac{E_{
u}}{L} \sim 3 \ 10^{-3} \, {
m eV}^2$$

 $P_{\mu\mu}(L)$: at SK $\sigma_{E_{\nu}} \sim E_{\nu}$: oscillation dip averaged out (ν_{μ} decay disfavoured at 4σ)

 $\frac{1}{\mu}(E_{\nu})$: The anomaly disappears at high energy, as predicted by oscillations.

K2K

 ν_{μ} beam sent from KEK to Kamioka ($L = 250 \text{ km}, E \sim 1.3 \text{ GeV} \sim m_p$). 80±6 events expected without oscillations (fiducial volume, forward/near ratio) 56 observed. Hint of spectral distortion. Fit consistent with SK atmospheric

The solar anomaly

The solar ν anomaly

6 Dec: KamLAND confirms the solar anomaly with reactor $\bar{\nu}_e$. Few days later...

hep-ph/0102234	9 Dec 2002 17.27.35
hep-ph/0212126	9 Dec 2002 20:30:41
hep-ph/0212127	9 Dec 2002 20:35:18
hep-ph/0212129	9 Dec 2002 20:53:09
hep-ph/0212146	10 Dec 2002 20:24:04
hep-ph/0212147	11 Dec 2002 20:33:29
hep-ph/0212212	15 Dec 2002 18:25:26
hep-ph/0212202	16 Dec 2002 18:16:34
hep-ph/0212270	18 Dec 2002 19:25:22
hep-ph/0301072	10 Jan 2003 20:17:38
	hep-ph/0102234 hep-ph/0212126 hep-ph/0212127 hep-ph/0212129 hep-ph/0212146 hep-ph/0212147 hep-ph/0212212 hep-ph/0212202 hep-ph/0212270 hep-ph/0301072

In the near future main results will follow from simple arguments:

- Δm_{sun}^2 from KamLAND: $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 \sin^2 2\theta_{sun} \sin^2 \frac{\Delta m_{sun}^2 L}{\Lambda E}$
- θ_{sun} from SNO/SK: $P(\nu_e \rightarrow \nu_e) \simeq \sin^2 \theta_{sun}$ and from KamLAND

KamLAND

Čerenkov scintillator that detects $\bar{\nu}_e$ from terrestrial (japanese) reactors using $\bar{\nu}_e p \rightarrow e^+ n$

- Delayed $e^+ + n$ coincidence: \sim no bck (geo neutrinos at $E_e < 2.6 \,\text{MeV}$)
- $\Phi \cdot \sigma$ known at ~ 3%: $E_{\overline{\nu}} \sim$ few MeV $\ll m_p$
- $E_{\overline{\nu}} \approx E_e + m_n m_p$: can see spectral distortion typical of oscillations
- Most reactors at $L \sim 180 \text{ km}$
- First data: 54 events seen, 86.8 expected effect seen at 99.95% CL
- Errors will decrease to $(3 \div 4)\%$

SNO

Čerenkov detector similar to SK (smaller, cleaner) with $H_2O \rightarrow D_2O$

 $\mathsf{CC} + \frac{1}{6}\mathsf{NC}: \nu e \to \nu e \qquad \mathsf{CC}: \nu_e d \to ppe \qquad \mathsf{NC}: \nu d \to \nu pn$

- 1st phase (2001): only e detected: distribution in ϑ_e gives CC. Confirms no spectral distortion.
- 2nd phase (2002): D captures n giving a 6.25 MeV γ ($\epsilon \sim 20\%$): CC/NC mainly distinguished by energy spectrum
- 3rd phase (2003): salt heavy water: CI captures n giving a 8 MeV γ ($\epsilon \sim 80\%$). CC/NC mainly distinguished by zenith-angle spectrum

Reactor $\bar{\nu}$ + solar ν \equiv

Fits at 90, 99, 99.73% CL

More oscillations?

What do we know?

Assuming oscillations of 3 massive Majorana neutrinos, we know

 $|\Delta m_{23}^2| = \sin^2 2\theta_{23} = \Delta m_{12}^2 = \theta_{12}$

We do we not know

 θ_{13} $\theta_{23} - \pi/4$ sign Δm_{23}^2 overall scale CP phases φ, α, β

Future plans =

Up to unexpected surprises (LSND?) future plans are:

- 1) Discover θ_{13} . I guess: either $\theta_{13} \approx \sqrt{\Delta m_{sun}^2 / \Delta m_{atm}^2} \approx 4.5^{\circ}$ or around its bound $\theta_{13} \lesssim 15^{\circ}$ (from the CHOOZ reactor)
 - $\theta_{13} \gtrsim 3^{\circ}$ with detector at few km from a reactor
 - $\theta_{13} \gtrsim \sqrt{E_{\nu}/\Delta m_{atm}^2} \text{ km} \approx 2^{\circ}$ if inverted spectrum and if **supernovæ** will be understood and detected
 - Discoveries with natural ν (sun, atm, terrestrial, reactor) maybe all done.
 Beam experiments: θ₁₃≥7° at K2K + Minos + CNGS.
 Off axis/superbeam could reach 2° in 2010.
 ν-factory can go below 1° in 2020 (price: G€)
- 2) then earth or SN matter effects tell the sign of Δm_{atm}^2 (i.e. <u>normal</u> or inverted spectrum?)
- 3) Sign of $\theta_{23} \pi/4$ (i.e. more ν_{μ} or ν_{τ} in ν_3 ?) from

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} \theta_{23} \cdot [1 - P(\nu_{e} \rightarrow \nu_{e})]$$

4) \mathbb{CP} from superbeam or ν -factory

Oscillations \leftrightarrow **astronomy**

from cosmic rays: mostly done (atmospheric anomaly).

from the sun: partly done (solar anomaly). Sun shines by pp not CNO.

from the earth: KamLAND is measuring MeV $\bar{\nu}_e$ from U, Th radioactivity

from galactic core collapse supernovæ: 20 $\bar{\nu}_e$ in 1987 roughly confirmed SN picture. At the next explosion ~ $10^3 \nu$ will teach us about SN and maybe θ_{13} . SK sensitivity close to expected *relic* SN $\bar{\nu}_e$ flux (might see if loaded with Gd).

from WIMP annihilations in the earth, sun... (ANTARES, IceCube, NEMO)

from other cosmic sources. If ν produced as $\pi^+ \rightarrow \mu^+ \nu_{\mu} \rightarrow e^+ \nu_e \bar{\nu}_{\mu} \nu_{\mu}$ the standard fraction 1 : 2 : 0 gets converted by atmospheric oscillations into 1 : 1 : 1, unaltered by extra oscillations, possibly by surprises (ν decay, CPT). Oscillation-generated ν_{τ} cross the earth even at high E_{ν} simplifying detection.

Oscillations \leftrightarrow **cosmology**

According to SM, many things happened at $T \sim \text{MeV} =$

- $(G_F^2 M_{\text{Pl}})^{-1/3}$: ν decoupling m_e : $e\bar{e}$ heating • max of $\Gamma_{\rm OSC}/H$
- $m_n m_p$: BBN

Formalism: evolve 3 × 3 density matrices $\rho_{\nu}, \rho_{\overline{\nu}}$ taking into account MSW effect at 1st ($\propto G_{\mathsf{F}}(N_e - N_{\overline{e}})$) and 2nd order ($\propto G_{\mathsf{F}}^2(N_e + N_{\overline{e}})$ = thermal ν masses)

Actually ν decoupling happened a bit earlier, so

observable	naïve	$+ e\bar{e} \rightarrow \nu\bar{\nu}$	+ oscillations	exp
⁴ He abundancy	0.246	+0.0001	+0.0001	0.24 ± 0.01
$(ho_ u/ ho_\gamma)/(ho_ u^0/ ho_\gamma^0)$ at CMB	3	+0.04	+0.001	2 ± 1

Counting neutrinos: $N_{\nu} = 3$ in the SM

LEP told $N_{\nu} = 2.984 \pm 0.008$ ($N_{\nu} = \text{light invisible species coupled to the } Z$)

CMB starts seeing $N_{\nu} \gtrsim 0$ $(N_{\nu} = \text{thermalized relativistic species at } T \sim \text{eV})$

BBN tells $N_{\nu} = 2.6 \stackrel{???}{\pm} 0.5$ ($N_{\nu} =$ thermalized relativistic species at $T \sim \text{MeV}$)

'Standard' cosmology gives significant bounds on chemical ν potentials and on mixings with extra sterile neutrinos (e.g. LSND).

These bounds are affected by observed $\nu_e \leftrightarrow \nu_\mu$ oscillations...

...but can be evaded with non standard cosmology.

Summary: unsafe bounds on unseen new physics.

Cosmology might enter in causal contact with neutrinos detecting their masses

Neutrino masses

Paths to neutrino masses ____

How to detect
$$m_{
u} \gtrsim \sqrt{\Delta m^2_{
m atm}} pprox$$
 0.05 eV?

Astrophysics. Time delay from galactic SN: $m_{\nu} < 20 \text{ eV}$, improvable to eV. 0.05 eV if intense source of MeV $\bar{\nu}_e$ from cosmological distance with ms timing.

 β decay. Mainz, Troitsk imply $m_{\nu_e} \lesssim 2 \,\mathrm{eV}$, improvable to 0.2 eV.

 $0\nu 2\beta$ decay. HM tells $|m_{ee}|/h \leq 0.4$ eV (if ν have Majorana masses implies $m_{\nu}/h < 1 \text{ eV}$), improvable to few 0.01 eV.

Cosmology. LSS + CMB + standard cosmology imply $m_{\nu} < (0.23 \div 1) \text{ eV}$.

Neutrino masses affect end-point e energy spectrum in β decays, $E_e \simeq Q - E_{\nu}$

 β decay

³H
$$\rightarrow$$
 ³He $e \bar{\nu}_e$
 $Q = 18.6 \text{ keV}$
 $\frac{dN}{dE_e} \propto \text{Re} \sum_i |V_{ei}^2| E_\nu \sqrt{E_\nu^2 - m_i^2}$

In principle sensitive to all masses and all ν_e mixings:

Mainz implies $m_{\nu} \leq 2 \,\text{eV}$ at 95% CL (Troitsk has a similar sensitivity)

Katrin aims at reaching a $0.2 \,\text{eV}$ sensitivity in 2010. Further improvements require new ideas.

$0\nu 2\beta$

Double β **decay**: $^{76}_{32}$ Ge cannot β -decay to $^{76}_{33}$ As that is heavier, so it $\beta\beta$ decays $^{76}_{32}$ Ge $\rightarrow ^{76}_{34}$ Se $e \ e \ \overline{\nu}_e \ \overline{\nu}_e \qquad (Q = 2038.6 \text{ keV})$ Heidelberg-Moscow, Igex, etc find $\tau \sim 10^{21} \text{ yr}.$

Neutrino-less double β decay $\propto |m_{ee}|^2$ implies (...) $|m_{ee}| < 0.4 h$ eV

- $h \sim 1$ is a $\sim 50\%$ uncertain nuclear matrix element.
- Many proposals with different nuclei and experimental techniques.
- Next experiment must suppress background (2ν2β, cosmic, U, Th,...), improve energy resolution, be **big**. 100 M€ in steps?
- Some proposals also for detection of WIMP CDM and/or pp solar ν .

Oscillation predictions for $0\nu 2\beta$

The $|m_{ee}|$ range restricts to the darker regions if we assume present best-fit values of Δm^2 , θ with zero errors ($\theta_{13} = 0$). Future $0\nu 2\beta$ experiments should test degenerate and inverted neutrinos.

Cosmology _____

Since 3 K° < m_{ν} < T_{rec} cosmology is a powerful probe of neutrino masses.

Neutrinos reduce clustering on scales smaller than R_U/z_{nr} , becoming nonrelativistic at $z_{nr} = m_{\nu}/3 \text{ K} \approx 100$. Assuming 'standard cosmological models' (e.g. $\Lambda \text{CDM} + \text{cte } n_s$) large scale structures combined with CMB data imply

 $m_{\nu} < (0.23 \div 1) \, \text{eV}$ (bias? Lyman- α ? Priors?)

If cosmology is minimal (Λ CDM with $n_s = 1$), can see $m_{\nu} = 0.05$ eV with CMB, galaxy power spectrum, gravitational lensing of CMB?

Leptogenesis

Thermal leptogenesis

 $N_{1,2,3} = \nu_R$ of see-saw with Yukawa $\lambda_{1,2,3}$ and masses $M_1 \ll M_2 < M_3$ $\tilde{m}_i \equiv \lambda_i^2 v^2 / M_i = 'N_i$ contribution to ν_L masses' = { m_{atm} or $\gtrsim m_{\text{sun}}$ or $< m_{\text{sun}}$ }

Out of equilibrium (η) $N_1 \to HL$ decays violate CP (ϵ): $6 \ 10^{-10} = \frac{n_B}{n_\gamma} \approx \frac{\epsilon \eta}{100}$

Smells right: as in BBN perform 'state of the art' computation adding \bullet all subleading λ_t^2 and $g_{1,2}^2$ effects \bullet thermal corrections \bullet correct Boltzmann equations. Result changes by several $\mathcal{O}(1)$ factors.

But see-saw 'predicts' 9 Majorana ν parameters in terms of 18 parameters.

Results: 'typically' $M_1 \sim 10^{10} \text{ GeV}$. With assumptions $(M_1 \ll M_{2,3}...)$ get - Lower bound on M_1 . Conflicts with gravitino over-production in SUSY? - Upper bound on ν masses (valid if ν_L are quasi-degenerate but ν_R are not)

- No prediction neither in minimal models with a single CP phase.

True goal is: test if leptogenesis is right, wrong or 'not even wrong':

- 1) understand flavour (many attempts without results), or
- 2) discover SUSY, $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$, δ and do archeology
- 3) or give up.

$\mu \rightarrow e\gamma$ from SUSY λ_{ν}

In the SM BR($\mu \rightarrow e\gamma$) ~ $(m_{\mu}/\Lambda_L)^2 \sim 10^{-40}$. In SUSY see-saw quantum effects imprint LFV in slepton masses. Starting from universal m_0^2 at M_{GUT}

$$m_{\tilde{L}}^2 = m_0^2 \mathbb{1} - \frac{3m_0^2}{(4\pi)^2} \lambda_{\nu}^{\dagger} \ln(\frac{M_{\text{GUT}}^2}{MM^{\dagger}}) \lambda_{\nu} + \cdots$$

Even assuming large ν mixings also in λ_{ν} one gets loose predictions

because BR($\mu \rightarrow e\gamma$) ~ 10⁻⁸ λ_{ν}^{4} while $m_{\nu} = \lambda_{\nu}^{2}v^{2}/M$ is measured.