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• Adiabatic and CDM isocurvature initial

fluctuations

• Correlation between them?

• The resulting angular power spectra

• Constraints from the WMAP data

• Large optical depth τ or correlated initial
conditions?
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(Explanation for slide 1)

I’ll talk about a possible correlation between adiabatic and cold
dark matter (CDM) isocurvature initial cosmic microwave back-
ground (CMB) fluctuations in the wake of the Wilkinson Mi-
crowave Anisotropy Probe (WMAP) data.

First I just remind you about the difference of the adiabatic
and isocurvature initial conditions by showing two naive pictures.
Then I mention some earlier results for uncorrelated initial fluc-
tuations and after that I’ll go to the correlation stuff.

Prior to the WMAP only some specific correlated models (with
many parameters fixed, see [T. Moroi and T. Takahashi, Phys.
Lett. B 522, 215 (2001), Phys. Rev. D 66, 063501 (2002)])
could be constrained, but it wasn’t possible to make reason-
able constraints on the general correlated models. Now the ac-
curate enough TT (temperature-temperature, i.e. temperature
auto correlation CTT

l ) and TE (temperature-polarization E-mode

cross-correlation CTE
l ) power spectra are available. The last two

points in my talk are based on the Physical Review Letters ar-
ticle by me and Vesa Muhonen [J. Valiviita and V. Muhonen,
Phys. Rev. Lett. 91, 131302 (2003)]. Unfortunately (or should
I say fortunately) some of you have heard quite similar talk by
me in Blois in France [J. Valiviita, astro-ph/0310206].
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History of fluctuations (Slide 2)
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(Explanation for slide 2)

Let’s start by some history of the CMB fluctuations. The hori-
zontal axis is the scale factor of the universe (so that time grows
towards right) and the vertical axis is the physical length scale.
As the universe expands the physical lengths get stretched also.

First there is an inflationary period, end of inflation and reheating
after which the universe is radiation dominated. Much later the
matter starts to dominate. The bold solid black line is the inverse
of the Hubble parameter (H−1), which is roughly the horizon
length. It is more or less constant during inflation and then
starts to grow.

During inflation there are quantum fluctuations that freeze in
when a particular scale goes out of the horizon. Here I show two
different scales by thin solid black lines: today’s horizon scale
and the scale corresponding to the third acoustic peak.

This slide is to explain two instants of time appearing on my
later slides. The first instant is the horizon exit of cosmologically
interesting scales during inflation. I mark it by t∗. However, the
initial conditions for CMB angular power calculations (like CAMB
code) should be given deep in the radiation dominated era. Thus
the interesting “initial time” for CMB physicists is trad.
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Adiabatic initial fluctuations (Slide 3)
For the adiabatic fluctuations there is no entropy per-
turbation

Srad ≡ Scγ =
δ(nc/nγ)

nc/nγ
=

δρc

ρ̄c
−
3

4

δργ

ρ̄γ
≡ 0 ,

but the total energy density fluctuates or, more pre-
cisely, there is perturbation in the comoving curvature
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(Explanation for slide 3)

Then about the initial conditions at the beginning of the radiation
dominated era.

The most studied possibility is pure adiabatic case. Then there
is no entropy perturbation at trad, but the total energy density
fluctuates. In the figure I have an example. The spatial fluctua-
tion in matter and radiation energy density is in the same phase
so that they yield to an initial fluctuation in the total energy
density.

Ambleside, UK, 25th August, 2003.
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Isocurvature initial fluctuations (Slide 4)
Now the entropy fluctuates initially (at the beginning
of radiation dominated era)

Srad ≡ Scγ =
δρc

ρ̄c
−
3

4

δργ

ρ̄γ
6= 0,

but there is no perturbation in the total energy density,

δρ = 0⇒ δργ = −δρc , or
〈

|R|2rad
〉

≈ 0 .
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(Explanation for slide 4)

In the isocurvature case the specific entropy fluctuates spatially
but there is no initial fluctuations in the total energy density or
more precisely in the comoving curvature R. For example, the
fluctuation in matter and radiation could cancel each other giving
spatially constant total energy density.
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(Slide 5)

Pure adiabatic, pure isocurvature, or mixture...

• In general case, the initial fluctuations are mixture
of adiabatic and isocurvature perturbations.

• Already, e.g., Boomerang and Maxima data could
be used to set strict 2σ constraints for uncorre-
lated mixture of adiabatic and CDM isocurvature
initial perturbations in a flat universe (Ωtot = 1)
[K. Enqvist, H. Kurki-Suonio and J. Valiviita, Phys.
Rev. D 62, 103003 (2000)]

– At most 56% of the final temperature anisotr-
opy angular power at the quadrupole (l = 2)
could come from the isocurvature initial per-
turbations

– At most 13% of the power at the first acous-
tic peak (l ≈ 200) could come from the isocur-
vature initial perturbations

• Pure CDM isocurvature fluctuations have been
ruled out even in open or closed universe
[K. Enqvist, H. Kurki-Suonio and J. Valiviita, Phys.
Rev. D 65, 043002 (2002)]
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(Explanation for slide 5)

The evolution of perturbations is basically described by sec-
ond order differential equations, adiabatic and isocurvature ini-
tial conditions being two independent modes. Thus the most
general initial condition is a mixture of adiabatic and isocurva-
ture fluctuations. The evolution equation tells how adiabatic
and isocurvature initial fluctuations are converted into the tem-
perature fluctuation present at the last scattering surface and
finally into the presently observable temperature (or polariza-
tion) anisotropy described by the angular power spectrum that
contains a series of peaks and valleys. If the other cosmological
parameters are kept fixed, but one changes form adiabatic initial
conditions to the isocurvature ones, then the resulting angular
power spectra are roughly in the opposite phases.

Already the first data sets by Boomerang and Maxima could be
used to constrain uncorrelated mixture of adiabatic and isocurva-
ture fluctuations in flat universe models. We found the maximum
2σ allowed isocurvature contribution to the quadrupole (l = 2)
temperature anisotropy to be 56% and to the first acoustic peak
(l ∼ 200) about 13% [K. Enqvist, H. Kurki-Suonio and J. Valivi-
ita, Phys. Rev. D 62, 103003 (2000) astro-ph/0006429]. Since
in open universe all the features of the angular power spectrum
are shifted towards right (larger l, smaller scales) and in closed
universe towards left, it still seemed to be possible to fit the first
acoustic peak by open or closed pure isocurvature models. How-
ever, the second data releases by Boomerang and Maxima iden-
tified also the second acoustic peak so well that the “adiabatic
peak structure” became evident and we could finally rule out all
pure CDM isocurvature models [K. Enqvist, H. Kurki-Suonio and
J. Valiviita, Phys. Rev. D 65, 043002 (2002) astro-ph/0108422].
Nevertheless, mixed correlated or uncorrelated models remain as
an interesting possibility.
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(Slide 6)
From K. Enqvist, H. Kurki-Suonio and J. Valiviita, Phys. Rev.

D 62, 103003 (2000)
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(Explanation for slide 6)

The upper panel: Here I show the angular power of an uncor-
related flat universe (Ω = 1) model with maximum isocurvature
contribution to the first acoustic peak. The solid line is the total
angular power while the dashed line represents the adiabatic com-
ponent and dot-dashed line the isocurvature component. The
maximum isocurvature contribution to the first acoustic peak
allowed by Boomernag, Maxima and COBE data is 13 %.

The lower panel: The solid line is the best-fit pure isocurvature
model. This is a closed universe model with Ω = 1.09. The first
eight data points are from COBE and the remaining points from
the second data releases by Boomerang and Maxima. Comparing
the best-fit pure isocurvature model to the typical well-fitted
pure adiabatic model one can even by an eye see that pure CDM
isocurvature models are ruled out.
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Correlation... (Slide 7)

• The first studies by [D. Langlois, Phys. Rev. D 59,

123512 (1999)].

• Generally
(

R̂rad(k)
Ŝrad(k)

)

=

(

1 TRS(k)
0 TSS(k)

)(

R̂∗(k)
Ŝ∗(k)

)

,

[L. Amendola, C. Gordon, D. Wands and M. Sasaki, Phys.

Rev. Lett. 88, 211302 (2002); C. Gordon, D. Wands,

B. A. Bassett and R. Maartens, Phys. Rev. D 63, 023506

(2001)].

• The initial curvature, R̂rad, and entropy, Ŝrad, per-
turbations are usually approximated by power laws:

R̂rad = Ar

( k

k0

)n1

âr(k) +As

( k

k0

)n3

âs(k),

Ŝrad = B
( k

k0

)n2

âs(k),

[C. Gordon, astro-ph/0112523; H. V. Peiris et al. (WMAP

group), astro-ph/0302225].

⇒ Correlation between adiabatic and isocurvature

〈

R̂(k)Ŝ∗(k′)
〉∣

∣

rad
= AsB

( k

k0

)n3+n2

δ(3)(k− k′)

= A2fiso cos∆
( k

k0

)n3+n2

δ(3)(k− k′),

where A2 = A2
r +A2

s , fiso = |B/A| and
cos∆ = sign(B)As/A.

• WMAP team assumed n1 = n3.
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(Explanation for slide 7)
As I told earlier, the initial fluctuations for the CMB physicist are
the comoving curvature perturbation R̂rad(k) and the entropy
perturbation Ŝrad(k) at the beginning of the radiation dominated
era. These are related to the perturbations at the horizon exit
during inflation by the given formula, where TRS(k) and TSS(k)
are the transfer functions that describe the evolution of the per-
turbations form the time of the horizon exit to the beginning of
the radiation dominated era. In most cases, they are found only
numerically by solving the evolution equations and modeling the
reheating process.

The initial perturbations R̂rad(k) and Ŝrad(k) are usually approx-
imated by power laws, which is a good approximation assuming
that “everything” changes slowly during inflation. Actually, e.g.,
in some cases of double inflation this is not true.

In an ordinary pure adiabatic case one would have only the first
term Ar(k/k0)n1âr(k). Now we have additional terms coming
from the entropy perturbation during inflation. In my termi-
nology Ar(k/k0)n1âr(k) is called the first adiabatic component,
As(k/k0)n3âs(k) the second adiabatic component (generated by
the entropy perturbation during inflation if the trajectory in the
multi field space is curved), and B(k/k0)

n2âs(k) the isocurvature
component. Ar, As, and B are amplitudes and nis spectral in-
dices. Moreover, âr and âs are Gaussian random variables obeying

〈âr〉 = 0, 〈âs〉 = 0, 〈âr(k)â
∗
s(k

′)〉 = δrsδ
(3)(k− k′) .

Now there is a 100 % correlation between the second abia-
batic and the isocurvature component. This correlation can be
parametrized by some overall amplitude A, the isocurvature frac-
tion fiso, and the relative correlation amplitude cos∆.

WMAP team already analyzed this kind of models, but for sim-
plicity, they assumed the two adiabatic spectral indices to be
equal, n1 = n3. This is not well motivated theoretically, since n1

comes from the curvature perturbation and n3 from the entropy
perturbation. If one really needs to simplify the analysis, one
should consider to put n3 and n2 equal.

Ambleside, UK, 25th August, 2003.
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(Slide 8)

The final angular power and spectral indices

• The angular power spectrum is now given by

Cl = A2
[

sin2(∆)Cad1
l + cos2(∆)Cad2

l

+f2isoC
iso
l + fiso cos(∆)Ccor

l

]

.

• For convenience, define new spectral indices as

nad1 − 1 = 2n1
nad2 − 1 = 2n3
niso − 1 = 2n2

[

ncor = (nad2+ niso)/2
]

.

• We used a grid method to scan the parameter
space

– τ , ΩΛ, ωb, ωc, nad1, nad2, niso, fiso, and cos(∆)

∼ 1010 combinations

– Cl’s calculated by our modified version of CAMB.

– Some likelihoods are non-Gaussian⇒marginal-
ization by integration is adopted.

Ambleside, UK, 25th August, 2003.



Cosmo-03, Jussi Väliviita.

(Explanation for slide 8)

Now the final angular power spectrum will be a combination of
four different components: the first adiabatic, the second adia-
batic, the isocurvature and the correlation between the second
adiabatic and the isocurvature component.

Historically the spectral indices have been defined so that n = 1
stands for the scale-free spectrum. Thus we need to redefine
our spectral indices to match this convention.

Ambleside, UK, 25th August, 2003.
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Our results (Slide 9)

• The data do allow, but do not especially favour
models with equal adiabatic spectral indices.
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• Actually, the data favour models where the two
adiabatic components have opposite spectral tilts
(nad1 > 1 and nad2 < 1 or vice versa).
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(Explanation for slide 9)

We found that the data do not especially favour the WMAP
team restriction. They constrained their analysis on the solid
line nad2 = nad1 only. As you can see, the data favour (or at
least allows) the regions where the two adiabatic components
have opposite spectral tilts.

The colour codes in the figure are: The 68.3%/1σ (white),
95.4%/2σ (light gray), 99.7%/3σ (medium gray), and more than
3σ (dark gray). This means that the data favour white and light
gray regions.

Ambleside, UK, 25th August, 2003.
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(Slide 10)

• The 2σ upper bound for the isocurvature fraction
in the initial power is

fiso < 0.84

using a prior niso < 1.84.

• The same calculation with WMAP team restric-
tion (nad2 = nad1) would give a slightly stricter
upper bound, fiso < 0.74.
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(Explanation for slide 10)

Using the WMAP data only we got for the 2σ upper bound of
isocurvature fraction fiso < 0.84. Since the angular power alone
cannot give “any” upper bound for the isocurvature spectral
index, we had to assume some prior for that niso < 1.84. If we
had chosen a larger prior, the upper bound for the isocurvature
fraction would have been larger also as is evident from the figure.
However, we assume from the WMAP team analysis that the
large scale structure data (2dF) would give about niso < 1.80
motivating our prior. In any case, we are able to compare our
result to the result which we would get with the WMAP team
restriction nad2 = nad1. With this simplification one would get
unrealistically strict upper bound for fiso.

Colour codes are same as on slide 9. In addition dashed lines
present confidence levels for nad2 = nad1 models for comparison.
1σ region differs significantly from our general models but 2σ
regions are nearly identical.

Ambleside, UK, 25th August, 2003.



Cosmo-03, Jussi Väliviita.

Running (adiabatic) spectral index? (Slide 11)

• The adiabatic initial power is

PR = A2
[

sin2∆( k
k0
)nad1−1+ cos2∆( k

k0
)nad2−1

]

.

• If nad1 and nad2 are nearly equal or ∆ = 0, π/2, or
π, then the adiabatic power can well be approxi-
mated by a single power law

PR = D( k
k0
)nad−1 ,

where

nad − 1 =
d lnPR(k)

d ln k
.

• The first derivative of this is always non-negative

dnad(k)

d ln k
=

sin2∆cos2∆(nad1 − nad2)
2knad1+nad2

[sin2∆knad1 + cos2∆knad2]2
.

• The WMAP group observed that the combined
CMB and other cosmological data may favor a
running spectral index with a negative first deriva-
tive.
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(Explanation for slide 11)

What I have told so far may naturally lead to a running adiabatic
spectral index. So recall that the adiabatic initial power is a
sum of two components. If the spectral indices are equal, we
can write the adiabatic initial power as a single power law. Same
happens if the sine or cosine is zero. In all other cases an attempt
to write the adiabatic part in terms of a single power law leads
to a scale dependent spectral index with the first derivative given
by the last formula of the slide. This is always non-negative.

WMAP team reported that combining their data with other data
sets may favour a running spectral index with a negative first
derivative. Thus one could expect that the combined data tend
to force the two adiabatic spectral indices to be nearly equal.
However, the correlation power may change the situation dramat-
ically and that’s why we are doing a more sophisticated analysis
on this issue.
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Example 2σ allowed angular power (Slide 12)
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(Explanation for slide 12)

Here we have an example of a two sigma allowed correlated
model. The upper panel gives the TT power and the lower panel
the TE power. The total angular power (solid black line) is a
sum of four components: the first adiabatic component (dashed
red), the second adiabatic component (dot-dashed magenta),
the isocurvature component (dotted blue), and the correlation
component (solid green).

In negatively correlated models, as here, the isocurvature contri-
bution to the lowest multipoles l in TT spectrum can be quite
large due to cancellation by the correlation part. In TE spectrum
the cancellation is not as exact so that there one gets enough
power at the lowest multipoles. Actually, in this particular ex-
ample, the isocurvature component dominates the TE spectrum
at the quadrupole l = 2. That’s why even quite a small optical
depth due to reionization (τ = 0.13) is enough to give a reason-
able TE power at the quadrupole. Thus in correlated models the
measured high quadrupole in TE spectrum can be achieved with-
out having as large τ as reported by the WMAP team. I mean
that one should keep in mind a possible degeneration between
optical depth and correlation/isocurvature contribution.

On the other hand, positive correlation together with isocurva-
ture could nicely lead to even more power in TE at the quadrupole,
but unfortunately it tends to give a high quadrupole also in
TT, which is not favoured by data. An interesting possibility
to explain the low quadrupole in TT would be to have a very
strong negative correlation which “eats” some power from the
TT quadrupole. Then in the TE this could be compensated by
a large τ . Suitably strong correlation contribution to the total
TT power requires that the second adiabatic and isocurvature
component dominate over the first adiabatic component.
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Conclusions (Slide 13)

• Correlation is certainly allowed by the data.

• The WMAP data tend to favour models where
nad1 6= nad2.

⇒ Running effective adiabatic spectral index.

• fiso < 0.84 (when using the WMAP data only and
a prior niso < 1.84).

• We are making a more refined analysis on the
WMAP and other data to have more quantitative
results, e.g., reliable upper bound for isocurvature
fraction.

• Correlation could have some effect to the optical
depth due to reionization (τ) interpreted from the
measured data.

– When allowing for a correlated mixture of adi-
abatic and isocurvature fluctuations, even a
smaller τ could possibly give a reasonable fit
to the (quadrupole in the) TE power spec-
trum!

Ambleside, UK, 25th August, 2003.
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