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Motivation for finite µL

Cosmology:

- nν − nν̄ unknown, upper limits from BBN
and CMB.
- Leptogenesis of ∆B, . . .

Theory:

- Standard model describes Nature ⇒ all its
properties are interesting.

- Comparison to QCD at finite µB.
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Electroweak thermodynamics

Thermodynamics ↔ partition function (free energy):

Z = Tr exp

[

−β

(

H −
∑

i

µiNi

)]

Electroweak theory: three conserved global charges

Xi =
1

nf
B − Li,

⇒ leptonic chemical potentials µLi.

In addition two conserved gauge charges.

- corresponding chemical potentials must be
fixed to ensure neutrality.
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In general, there might also be an external
hypercharge magnetic field BY related to the U(1)
gauge group.

⇒ Z = Z(T, µLi,BY )

Set now BY = 0 and µLi = µ ∀ i = 1 . . . nf .

Z =

∫

Dϕ e−S[ϕ]+µ
∫ β
0dτ(L−B) ?

where L =

nf∑

i=1

Li

with the (euclidean) electroweak action. The chemical
potentials related to the gauge charges can be absorbed
to the action.
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Dimensional reduction

Problems in resolving the thermodynamics:

• Infrared divergences in perturbative calculations

- expansion parameter for static bosonic
degrees of freedom becomes large.

• Monte Carlo studies of the full electroweak theory
difficult and tedious.

- chiral fermions, multiple scales, ...

Solution: combine both methods!

Z =

∫

Dϕ e−S+µiNi

pert.
≈

∫

DΦDAa
iDBi e

−
∫
d3x Leff

︸ ︷︷ ︸
solve numerically
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The effective theory = the most general theory for the
modes in question respecting the desired symmetries:

Leff = (DiΦ)
†DiΦ+m2

3Φ
†Φ+ λ3(Φ

†Φ)2

+
1

4
FijFij +

1

4
Ga

ijG
a
ij,

with some (perturbatively calculated) relation between
the parameters of this theory and the physical variables







T
mH

µ
...







?
⇐⇒







m2
3

λ3
g23
g′23







.

The task:

Solve the PD of Leff and map that to a PD in terms
of T, µL, mH!
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Results

Define dimensionless parameters

x ≡
λ3
g23

y ≡
m2

3(g
2
3)

g43
z ≡

g′23
g23

and let the dimensions be given by g23 (
[
g23
]
= 1GeV)

⇒ The phase diagram in terms of x and y:
Kajantie et al, Karsch et al
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Matching to physical variables:

x(T, µ,mH) ≈
m2

H

8m2
W

+
1

g2
96

1331

µ2

T 2

y(T, µ,mH) ≈ −
m2

H

2g4T 2
+

1

16g4

[

g2
m2

H

m2
W

+ 3g2 + g′2

+4g2Y

(

1 +
1

3π2
µ2

T 2

)]

−
1

g4
16

121

µ2

T 2

For fixed T and mH, increasing µ leads to increasing
x and decreasing y.
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The phase diagram in terms of T , µ and mH:

AG, PRD68:016001, 2003
(hep-ph/0303019)
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Remarks: for a fixed mH, increasing µ leads to

- increasing Tc

- a weaker transition

No phase transition for sufficiently large µ for any mH!
(only a crossover transition)
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Understanding all this

In general, finite µ for the global charges ⇒ finite µ
for the gauge charges

=⇒ finite µ for the scalar field

Consequences:

1. Increased “tendency” to condense (Bose
condensation)

⇒ Higher temperature needed to restore the
symmetry (to melt the condensate)

2. Interactions with temporal components of the gauge
fields is altered.

⇒ Additional interactions in the scalar sector
changes the nature of the phase transition.
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How far can we go?

1. Integration over the nonstatic modes

- can be performed for arbitrary µ/(πT ) to
a desired order in g2

- reduction consistent only if µ/(πT ) . 1

2. Integration over the adjoint scalars

- some of the couplings of the effective theory
proportional to µ/(πT ) ⇒ must require
µ/(πT ) . g

- impossible to perform the reduction to a
certain order in g2 for arbitrary µ/(πT )
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Conclusions

- Dimensional reduction of the electroweak theory is
performed at finite lepton number density.

- The electroweak phase diagram is solved in terms of
(T, µL,mH).

- It is seen that Tc grows with µL and the transition
becomes weaker.

- For sufficiently large µL there is no phase
transition for any value of mH, just a
crossover transition.

- Methods used are not applicable for large chemical
potentials.
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