The electroweak phase diagram at finite net lepton number density

Antti Gynther*

Department of physical sciences, Theoretical physics division, University of Helsinki

> at Cosmo -03 Ambleside, 25.8.2003

*e-mail: antti.gynther@helsinki.fi

Motivation for finite μ_L

Cosmology:

- $n_{\nu} n_{\bar{\nu}}$ unknown, upper limits from BBN and CMB.
- Leptogenesis of ΔB , . . .

Theory:

- Standard model describes Nature \Rightarrow all its properties are interesting.
- Comparison to QCD at finite μ_B .

Electroweak thermodynamics

Thermodynamics \leftrightarrow partition function (free energy):

$$\mathcal{Z} = \operatorname{Tr} \exp\left[-\beta \left(H - \sum_{i} \mu_{i} N_{i}\right)\right]$$

Electroweak theory: three conserved global charges

$$X_i = \frac{1}{n_f} B - L_i,$$

 \Rightarrow leptonic chemical potentials μ_{L_i} .

In addition two conserved gauge charges.

- corresponding chemical potentials must be fixed to ensure neutrality.

In general, there might also be an external hypercharge magnetic field B_Y related to the U(1) gauge group.

$$\Rightarrow \mathcal{Z} = \mathcal{Z}(T, \mu_{L_i}, \boldsymbol{B}_Y)$$

Set now $\boldsymbol{B}_Y = 0$ and $\mu_{L_i} = \mu \ \forall i = 1 \dots n_f$.

$$\mathcal{Z} = \int \mathcal{D}\varphi \, \mathrm{e}^{-S[\varphi] + \mu \int_0^\beta \mathrm{d}\tau (L-B)} ?$$

where $L = \sum_{i=1}^{n_f} L_i$

with the (euclidean) electroweak action. The chemical potentials related to the gauge charges can be absorbed to the action.

Dimensional reduction

Problems in resolving the thermodynamics:

- Infrared divergences in perturbative calculations
 - expansion parameter for static bosonic degrees of freedom becomes large.
- Monte Carlo studies of the full electroweak theory difficult and tedious.
 - chiral fermions, multiple scales, ...

Solution: combine both methods!

$$\mathcal{Z} = \int \mathcal{D}\varphi \, \mathrm{e}^{-S+\mu_i N_i}$$

$$\stackrel{\text{pert.}}{\approx} \int \mathcal{D}\Phi \mathcal{D}A_i^a \mathcal{D}B_i \, \mathrm{e}^{-\int \mathrm{d}^3 x \, \mathcal{L}_{\text{eff}}}$$

solve numerically

The effective theory = the most general theory for the modes in question respecting the desired symmetries:

$$\mathcal{L}_{\text{eff}} = (D_i \Phi)^{\dagger} D_i \Phi + m_3^2 \Phi^{\dagger} \Phi + \lambda_3 (\Phi^{\dagger} \Phi)^2 + \frac{1}{4} F_{ij} F_{ij} + \frac{1}{4} G^a_{ij} G^a_{ij},$$

with some (perturbatively calculated) relation between the parameters of this theory and the physical variables

$$\left\{\begin{array}{c}T\\m_{H}\\\mu\\\vdots\end{array}\right\} \stackrel{?}{\iff} \left\{\begin{array}{c}m_{3}^{2}\\\lambda_{3}\\g_{3}^{2}\\g_{3}^{\prime 2}\end{array}\right\}$$

The task:

Solve the PD of $\mathcal{L}_{\mathrm{eff}}$ and map that to a PD in terms of $T, \mu_L, m_H!$

Results

Define dimensionless parameters

$$x \equiv \frac{\lambda_3}{g_3^2} \quad y \equiv \frac{m_3^2(g_3^2)}{g_3^4} \quad z \equiv \frac{g_3'^2}{g_3^2}$$

and let the dimensions be given by g_3^2 ($[g_3^2] = 1 \text{ GeV}$) \Rightarrow The phase diagram in terms of x and y:

No phase transition for $x \gtrsim 0.1!$

Perturbative methods unreliable at large x.

Matching to physical variables:

$$\begin{aligned} x(T,\mu,m_H) &\approx \frac{m_H^2}{8m_W^2} + \frac{1}{g^2} \frac{96}{1331} \frac{\mu^2}{T^2} \\ y(T,\mu,m_H) &\approx -\frac{m_H^2}{2g^4T^2} + \frac{1}{16g^4} \left[g^2 \frac{m_H^2}{m_W^2} + 3g^2 + g'^2 \right. \\ \left. + 4g_Y^2 \left(1 + \frac{1}{3\pi^2} \frac{\mu^2}{T^2} \right) \right] - \frac{1}{g^4} \frac{16}{121} \frac{\mu^2}{T^2} \end{aligned}$$

For fixed T and m_H , increasing μ leads to increasing x and decreasing y.

The phase diagram in terms of T, μ and m_H :

AG, PRD68:016001, 2003 (hep-ph/0303019)

- increasing T_c
- a weaker transition

No phase transition for sufficiently large μ for any m_H ! (only a crossover transition)

Understanding all this

In general, finite μ for the global charges \Rightarrow finite μ for the gauge charges

 \implies finite μ for the scalar field

Consequences:

1. Increased "tendency" to condense (Bose condensation)

 \Rightarrow Higher temperature needed to restore the symmetry (to melt the condensate)

2. Interactions with temporal components of the gauge fields is altered.

 \Rightarrow Additional interactions in the scalar sector changes the nature of the phase transition.

How far can we go?

- 1. Integration over the nonstatic modes
 - can be performed for arbitrary $\mu/(\pi T)$ to a desired order in g^2
 - reduction consistent only if $\mu/(\pi T) \lesssim 1$
- 2. Integration over the adjoint scalars
 - some of the couplings of the effective theory proportional to $\mu/(\pi T) \Rightarrow$ must require $\mu/(\pi T) \lesssim g$
 - impossible to perform the reduction to a certain order in g^2 for arbitrary $\mu/(\pi T)$

Conclusions

- Dimensional reduction of the electroweak theory is performed at finite lepton number density.

- The electroweak phase diagram is solved in terms of (T, μ_L, m_H) .

- It is seen that T_c grows with μ_L and the transition becomes weaker.

- For sufficiently large μ_L there is no phase transition for any value of m_H , just a crossover transition.

- Methods used are not applicable for large chemical potentials.