

### David Hitlin Royal Society of Edinburgh February 4, 2004

Babar ™ and © Nelvana

### Heavy flavour physics at $e^+e^-$ machines

- e+e<sup>-</sup> colliders have provided the majority of our information on heavy quark and heavy lepton physics
  - A new generation of experiments (BABAR/PEP-II, Belle/KEK-B) has been quite successful, providing the first evidence of CP violation in the B meson system and precise new results on many rare decays
    - PEP-II luminosity is currently >7x10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> and will reach 10<sup>34</sup> by the end of the current run
    - KEK-B luminosity is currently 1x10<sup>34</sup>
    - BABAR/PEP-II (~160 fb<sup>-1</sup>) and Belle/KEK-B (~185 fb<sup>-1</sup>) will each have data samples of 800-1000 fb<sup>-1</sup> by late in this decade
- Near the end of the decade, a new set of experiments at the Tevatron and LHC (ATLAS, CMS, LHCb, BTeV) will provide very large samples of heavy quark decays, including the  $B_s$ , which are not produced at the  $\Upsilon(4S)$  in  $e^+e^-$
- Proposals are being prepared for substantial upgrades of PEP-II and KEK-B to luminosities of 10<sup>35</sup> to 10<sup>36</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - How do these new initiatives stack up against the new hadronic experiments?



#### PEP-II delivered luminosity (though end of 2003)



#### The $\Upsilon$ resonances in $e^+e^-$ annihilation: non-relativistic $b\overline{b}$ atomic systems



## What is the future of experimental flavor physics?

| The current lineup:    | <u>e+e experiments</u><br>BABAR, Belle | <u>Hadron experiments</u><br>CDF, DØ |
|------------------------|----------------------------------------|--------------------------------------|
| The situation in ~2010 | SuperBABAR<br>and/or<br>SuperBelle     | ATLAS, CMS, LHCb<br>BTeV             |

Total BABAR and Belle data samples will amount to ~800-1000 fb<sup>-1</sup> each

• CDF (DØ), in areas which overlap  $e^+e^-$ , are being calibrated with TeV-II data

Würthwien(SSI02): for untagged  $B \rightarrow h^+h^-$ : 2 fb<sup>-1</sup>(CDF)  $\Leftrightarrow$  500 fb<sup>-1</sup>(BABAR, Belle) CDF/DØ can, of course, study  $B_s$  decay, but is unlikely, in general, to markedly improve on  $e^+e^-$  results in other areas

- LHC experiments will bring statistics to the next level
- In this context, is a new, very high luminosity  $e^+e^-$  effort warranted?

Babar ™ and © Nelvana

#### PEP-II and KEK-B upgrade scenarios



 $L = 2.17 \times 10^{34} \frac{n\xi_{y} EI_{b}}{\beta_{y}^{*}}$ 

#### An upgrade path from BABAR to SuperBABAR



### Comparison of $e^+e^- B$ Factories and hadronic experiments

|                | $\Upsilon(4s)$                           | p ar p                        |
|----------------|------------------------------------------|-------------------------------|
| min $p_T$      | $\sim 50 { m MeV}$                       | $\sim 400 {\rm MeV}$          |
| photons        | excellent                                | limited to poor $\Rightarrow$ |
| PID            | $\mathbf{excellent}$                     | limited to poor $\Rightarrow$ |
| $K_L,ar{n}$    | limited                                  | limited to poor               |
|                | monochromatic B                          | unknown $p_B$                 |
|                | hard to sep. $B \leftrightarrow \bar{B}$ | hard to sep. $B$              |
|                |                                          | from fragmentation            |
| Xsection       | modest                                   | huge                          |
| heavy vs light | limited vertex sep.                      | excellent vertex sep.         |
| Wűrthwein      | only $B_d, B_s$                          | all b-hadrons                 |
|                |                                          | ×1                            |

#### Reconstruct exclusive B decays to *CP* eigenstates and flavor eigenstates and tag the flavor of the other *B* decay $B_{rec}^{0}$ Y(4S)P $\bar{B}_{tag}^0$ Select $B_{CP}$ candidates $(B^0 \rightarrow J/\psi K_s^0, \pi^+\pi^-, etc.)$ Select $B_{tag}$ events using, primarily, and $B_{\rm flay}$ candidates $(B^0 \rightarrow D^{*-}\pi^+, etc.)$ leptons and K's from B hadronic decays & determine B flavor Measure the mistag fractions $w_i$ and determine the dilutions $\mathcal{D}_i = 1 - 2 w_i$ Measure $\Delta z$ between $B_{CP}$ and $B_{tag}$ to determine the signed time difference $\Delta t$ between the decays Determine the resolution function for $\Delta z$ $\mathcal{R}(\Delta t; \hat{a}) = \sum_{i=1}^{i=3} \frac{f_i}{\sigma \sqrt{2\pi}} \exp\left(-\left(\Delta t - \delta_i\right)^2\right) / 2\sigma_i^2$ Babar ™ and © Nelvana D. Hitlin Royal Society of Edinburgh February 4, 2004

Overview of the  $\Upsilon(4S)$  analysis

#### Recoil physics at the $\Upsilon(4S)$



- Semileptonic decays
  - $B \rightarrow D^{(*)}\ell\nu, B \rightarrow (\pi,\rho)\ell\nu, B \rightarrow X_{c,u}\ell\nu \dots$  ()
  - $B \rightarrow D^{(*)} \tau \nu$  (sensitive to New Physics)
  - $\bullet \quad B \to D^{(*)} \tau \nu$
- Purely leptonic decays  $B \rightarrow \tau \nu$ , ....
- $\bullet \quad B \to K \nu \bar{\nu}$
- $B \rightarrow \text{invisible}$
- $B \to X_s \gamma$

Babar ™ and © Nelvana



- Fully reconstruct one of the two B's in hadronic modes (for some topics, in semileptonic modes as well)
- ...and do it with "high" efficiency
- The rest of the event is the other B, whose four-momentum is known

You have a single *B* beam, with reduced systematics in  $V_{cb}$ ,  $V_{ub}$  studies, and

reduced backgrounds for rare decays, especially those involving neutrinos or photons

February 4, 2004



### The recoil method

#### Pros

•Subtract combinatorial background • $B_{reco}$  (recoil) kinematics known with small uncertainties • $B_{reco}$  (recoil) flavor determined • $B_{reco}$  (recoil) charge ( $B^0$ -  $B^+$  separation) •Direct  $m_X$  reconstruction

- •Lepton charge  $B_{reco}$  (recoil) flavor correlation
- •Kinematic constraints to improve  $m_X$  resolution

#### Cons

·Low efficiency- can be tuned for purity

The final efficiency is low (~0.4% (per BB pair), but samples are large: 4x10<sup>6</sup> B/ab<sup>-1</sup> [3 B<sup>0</sup>:5 B<sup>+</sup>]





Babar ™ and © Nelvana

#### Recoil sensitivity summary



### Probes of new physics using the bUT

#### Measure sides and angles of the Unitarity Triangle to best possible precision



### The Unitarity Triangle - is there room for New Physics?

- The usual Unitarity Triangle (b triangle) is only one of six such relations
  - It has been the most extensively studied because it is the most sensitive to Standard Model CP violation
  - It is particularly sensitive to new physics that violates CKM unitarity
- Experimental data used in the b UT study is sensitive to  $b \rightarrow d$  and  $s \rightarrow d$  transitions, but not particularly to  $b \rightarrow s$
- These processes are used precisely because they are the cleanest in the Standard Model, so it is difficult for New Physics to compete with them
- Thus increases in experimental precision of the b UT, which are certainly warranted, especially in view of expected improvements in the precision of lattice QCD calculations, are not the most likely to be the most direct approach to study new flavor physics

#### Probes of New Physics in B Meson Decays at BABAR (and SuperBABAR)

- Physics beyond the Standard Model can produce measurable effects in rare B meson decays, in particular in decays involving gluonic or radiative  $b \rightarrow s$  penguins
- There are different categories of probes
  - CP-violating asymmetries and the unitarity triangle construction
    - Consistency of the most precise measurements with (three generation) unitarity (sides + angles):  $V_{ub}$ ,  $V_{cb}$ ,  $\Delta m_{d,s}$ ,  $\varepsilon$ ,  $\alpha$ ,  $\beta$ ,  $\gamma$
    - Consistency of different CPV measurements that in the SM measure the same weak phase: e.g. "sin2 $\beta$ " in different modes, e.g.  $A_{CP}$  in  $B^0 \rightarrow J/\psi K_s^0 \ vs \ \phi K_s^0$
  - Rare decay branching ratios and kinematic distributions
    - Inclusive (and semi-inclusive):  $B \to K^* \gamma, \rho \gamma, K^{(*)} \ell \ell, \ell \ell, K \nu \overline{\nu}.....$
    - Exclusive:  $B \rightarrow s\gamma, s\ell\ell, \ldots$
- In SUSY, measuring these loop effects is required for a full understanding of off diagonal terms in the squark coupling matrix
  - It is crucial that Standard Model theory uncertainties be brought under control
- At the current level of statistics (~10<sup>8</sup> B meson decays) there are tantalizing experimental results
- This talk will
  - summarize the current experimental situation in selected areas
  - discuss prospects for improvements in probing new physics with very high statistics samples which could be obtained at a Super B Factory

Babar ™ and © Nelvana

### New physics should be around the corner

- Due to the unstable Higgs mass in the SM, we expect to see New Physics at the TeV scale
- The impact on low-energy observables depends on the amount of flavor/CPV, the presence of large parameters, the new particle spectrum and measurement precision
- In non-minimal flavor violation (MFV) scenarios:
  - Large (O(1)) signals are possible in time-dependent CP asymmetries:  $A_{FB}(B \to (X_s, K^*)\ell^+\ell^-), A_{CP}(b \to s\gamma), \dots$
  - Effects in "SM-zero" observables: can be large, producing baryon polarization in  $\Lambda_b \to \Lambda \gamma$ , differences in  $\sin 2\beta (c \bar{c}_A K)$  and  $\sin 2b (c \bar{c}_V K)$

#### In MFV scenarios

- Large effects in helicity-flip operators  $f'_{L(R)}\Gamma f_{R(L)}$  at large  $\tan\beta$ , e.g.,  $\mathcal{B}(B_{d,s} \rightarrow \mu^{+}\mu^{-})$ ,  $C_{7\gamma}$  flips sign ( $A_{FB}$ )
- Searches for these effects are complementary to direct collider searches at the Tevatron, LHC or NLC, where searches are flavor-diagonal



#### **CP** violation in $B^0 \rightarrow J/\psi K_s$



#### Time-Dependent CP Asymmetries

Time-dependence of  $B^{0}\overline{B}^{0}$  mixing in decays to flavor eigenstates (*CP*-conserving)

$$A_{mixing}(\Delta t) = \frac{N(unmixed) - N(mixed)}{N(unmixed) + N(mixed)} \approx (1 - 2w) \cos(\Delta m_{B_d} \Delta t)$$
  
Time-dependence of CP-violating  
asymmetry in in decays to  
CP eigenstates  

$$A_{CP}(\Delta t) = \frac{N(B_{tag} = B^0) - N(B_{tag} = \overline{B}^0)}{N(B_{tag} = B^0) + N(B_{tag} = \overline{B}^0)} \approx (1 - 2w) [S \sin(\Delta m_{B_d} \Delta t) + C \cos(\Delta m_{B_d} \Delta t)]$$

We use the high statistics  $B_{\text{flav}}$  data sample to determine the mis-tagging probabilities w and the parameters of the time-resolution function

Babar ™ and © Nelvana

#### Asymmetry for tagged decays to CP eigenstates



#### Present Status of the Unitarity Triangle in a Standard Model fit



#### BBNS Fit to $B \rightarrow \pi K$ and $B \rightarrow \pi \pi$



[Beneke, Buchalla, Neubert, Sachrajda]

Establishes CP violation in the b sector ( $ImV_{ub}=0$ )
 Leaves room for New Physics in b o s FCNC processes!

Babar ™ and © Nelvana

#### *CP* violation in $B^0 \rightarrow \pi^+\pi^-$



#### *CP* asymmetry in $B^0 \rightarrow \pi^+\pi^-$ : a discrepancy



#### BABAR/Belle difference is still at ~2 $\sigma$ level



### Isolating the penguin contribution to $\sin 2\alpha$ using $B^0 \rightarrow \pi^0 \pi^0$



#### Another estimate of the Gronau-London construction



#### Measuring $\gamma$ with $B \rightarrow DK$

- Gronau-Wyler, Atwood, Dunietz and Soni method:
   Comparison of BR's for B→DK modes can allow extraction of γ
- There is an 8-fold ambiguity
- With sufficient luminosity, it is possible to resolve the ambiguity: with 10 ab<sup>-1</sup>, it appears that a precision of  $\Delta \gamma \cong 1^{\circ}$ -2.5 ° can be achieved

Study was done with 600 fb<sup>-1</sup>, scaled to 10 ab<sup>-1</sup>

- There are many other methods for extracting  $\gamma$  using tagged and untagged branching ratios
- These can be done at  $e^+e^-$  and at hadron machines

Babar <sup>™</sup> and © Nelvana

Soffer



D Littlin Doval Society

## $\gamma$ extraction may involve hadronic engineeering

- There are many (albeit related) clean ways to measure  $\gamma$ 
  - Frequent improvements & new ideas
  - "Clean" measurements may not be absolutely clean
    - $D^0$  mixing may affect  $B \rightarrow DK$ .
    - Current limits on D mixing yield an effect at the few-degree level (Silva, Soffer., PRD61, 112001)
    - The effect will decrease as D mixing limits tighten, or will be incorporated into the analysis once D mixing is measured
  - Some techniques require tagging, some do not
- Given foreseeable improvements in the precision of mixing, theory and lattice calculations, the target for  $\gamma$  precision should be ~1°
  - This may decrease by the time the machine is built, depending on developments in theory and experiment
- With 10 ab<sup>-1</sup> we will
  - Measure  $\gamma$  to ~ 2° or less (statistical)
  - Resolve essentially all ambiguities
  - Understanding systematic errors at this level will be crucial, for both  $e^+e^-$  and hadron experiments

Babar <mark>™ and © Nelvana</mark>

#### Lattice uncertainties (%) - C. Bernard

| quantity             | now   | 1-2 yrs.                    | 3-5 yrs.                              | 5-8 yrs.                              |
|----------------------|-------|-----------------------------|---------------------------------------|---------------------------------------|
|                      |       | MILC0                       | MILC1                                 | MILC2                                 |
| $f_B$                | 15    | 10, 9, 7, 6                 | 9, 8, 5, 4                            | 8, 8, 4, <mark>3</mark>               |
| $f_B \sqrt{B_B}$     | 15-20 | 12, 11, 8, 7                | 10, 10, <mark>6</mark> , 5            | <mark>9</mark> , 9, 5, <mark>4</mark> |
| $f_{B_s}/f_B$        | 6     | 5, 3                        | 3, 2                                  | 3, 1                                  |
| ξ                    | 7     | 6, 4                        | 4, 3                                  | 3, 1.5                                |
| $B \to \pi \ell \nu$ | 15    | <b>11</b> , 10, 8, <b>7</b> | <mark>9</mark> , 9, 6, <mark>5</mark> | 8, 8, 4, <mark>3</mark>               |
| $B \to D\ell\nu$     | 6     | <b>4</b> , 3, 3, <b>2</b>   | 3, 3, 2, 1.6                          | <b>3</b> , 3, 2, <b>1</b> .2          |

Key: red= NO S $\chi$ PT; 1-loop pert. th. purple= S $\chi$ PT; 1-loop pert. th. navy= NO S $\chi$ PT; 2-loop pert. th. (or pert. th. not needed) blue= S $\chi$ PT; 2-loop pert. th. (or pert. th. not needed)

Babar ™ and © Nelvana

R

### A projection to 2010 by the CKM Fitter group



#### Another disagreement



Babar ™ and © Nelvana

VR.



Strong agreement on phase in  $B \to \psi K_S$ :

$$\sin 2\beta_{\psi K} = \begin{cases} 0.741 \pm 0.075 \text{ (BABAR)}\\ 0.733 \pm 0.064 \text{ (Belle)} \end{cases} \implies 0.736 \pm 0.049 \text{ (average)} \end{cases}$$

"Old" published data showed discrepancy between  $\beta_{\psi K}$  and  $\beta_{\phi K}$ , but not convincing:

$$\sin 2\beta_{\phi K} = \begin{cases} -0.18 \pm 0.51 & (BABAR) \\ -0.73 \pm 0.68 & (Belle) \end{cases}$$

LP03 results are more complicated:

$$\sin 2\beta_{\phi K} = \begin{cases} 0.45 \pm 0.44 & (BABAR) \\ -0.96 \pm 0.51 & (Belle) \end{cases}$$

Belle data shows a 3.3 $\sigma$  discrepancy, but Babar within 1 $\sigma$ . Data disagree at 2.7 $\sigma$ . But other  $b \to \overline{s}ss$  transitions also give low  $S_{\phi K}$ , including  $B \to K^+K^-K_S$  and  $B \to \eta' K_S$ . For all  $b \to \overline{s}ss$  processes,

#### $S_{\phi K} = 0.24 \pm 0.15 \quad \Leftarrow 3.1\sigma \text{ below } b \to c\overline{s}s \text{ modes}$

Babar ™ and © Nelvana

#### Probes of new physics

- 1) Measure the CP asymmetry in modes other than  $B^0 \rightarrow J/\psi K_s^0$  that measure  $\sin 2\beta$  in the Standard Model
  - Precision of benchmark  $\sin 2\beta$  in  $B^0 \rightarrow J/\psi K_s^0$  can improve to the ~1% level
  - Expect the same value for " $\sin 2\beta$ " in  $b \rightarrow c\overline{c}s$ ,  $b \rightarrow c\overline{c}d$ ,  $b \rightarrow s\overline{s}s$ , but different SUSY models can produce different asymmetries
  - A great deal of luminosity is required to make these measurements to meaningful precision



#### A selection of papers on $A_{CP}(B \rightarrow \phi K_s)$

- T. Moroi, Phys. Lett. B 493, 366 (2000) [arXiv:hep-ph/0007328].
- E. Lunghi and D. Wyler, Phys. Lett. B 521, 320 (2001) [arXiv:hep-ph/0109149].
- D. Chang, A. Masiero and H. Murayama, arXiv:hep-ph/0205111.
- M. B. Causse, arXiv:hep-ph/0207070.

 $\Leftarrow$  Babar/Belle  $S_{\phi K}$  results  $\Longrightarrow$ 

- G. Hiller, arXiv:hep-ph/0207356.
- A. Datta, Phys. Rev. D 66, 071702 (2002) [arXiv:hep-ph/0208016].
- M. Ciuchini and L. Silvestrini, arXiv:hep-ph/0208087.
- M. Raidal, Phys. Rev. Lett. 89, 231803 (2002) [arXiv:hep-ph/0208091].
- B. Dutta, C. S. Kim and S. Oh, arXiv:hep-ph/0208226.
- G. L. Kane, P. Ko, H. b. Wang, C. Kolda, J. H. Park and L. T. Wang, arXiv:hep-ph/0212092 and Phys. Rev. Lett. **90**, 141803 (2003) [arXiv:hep-ph/0304239].
- R. Harnik, D. T. Larson, H. Murayama and A. Pierce, arXiv:hep-ph/0212180.
- M. Ciuchini, E. Franco, A. Masiero and L. Silvestrini, Phys. Rev. D 67, 075016 (2003) [arXiv:hep-ph/0212397].
- S. Baek, Phys. Rev. D 67, 096004 (2003) [arXiv:hep-ph/0301269].
- J. Hisano and Y. Shimizu, Phys. Lett. B 565, 183 (2003) [arXiv:hep-ph/0303071].
- K. Agashe and C. D. Carone, Phys. Rev. D 68, 035017 (2003) [arXiv:hep-ph/0304229].
- D. Chakraverty, E. Gabrielli, K. Huitu and S. Khalil, arXiv:hep-ph/0306076.
- T. Goto, Y. Okada, Y. Shimizu, T. Shindou and M. Tanaka, arXiv:hep-ph/0306093.

Babar ™ and © Nelvana

#### What level of precision is required?

- Statistical/systematic error on  $\sin 2\beta$  from  $B^0 \rightarrow J/\psi K_s^0$  will improve to somewhat beyond the 1% level. This is more than adequate
- SUSY effects on sin2 in other modes can be quite large, tens of percent of the CKM value
- With what precision must one measure  $\sin 2\beta$  in other, more difficult decay modes in order to establish an effect?
- An example:
  - Assume  $\sin 2\beta (J/\psi K_s^0) = 0.75$  (its current value), but the error is reduced to 1%,  $\sigma = 0.0075$ ,
  - $\sin 2\beta (\varphi K_s^0) = 0.60$ , *i.e.*, the SUSY contribution to  $B^0 \to \varphi K_s^0$  is 20%
  - For a 5 sigma effect:  $\Delta \sin 2\beta = 0.15/5 = 0.03$ , a 5% measurement
  - This requires a data sample of the size provided by a 10<sup>36</sup> asymmetric B Factory



#### Extrapolated statistical errors on CP asymmetries



### New CP Violating effects must be there

- CP effects in the flavor sector that are not accounted for by the CKM phase must exist
  - If they do not exist, SUSY and other models constructed with the same motivation will be ruled out
- The sensitivity required to see these effects can be reached
  - It is possible, though not likely, that SUSY could be discovered through loop effects before there is explicit production of new particles at LHC
- Assume that evidence for SUSY is found at the LHC or NLC
  - What will we actually know?
    - The masses of some of the SUSY partners: gluino, squark, ......
    - Something about coupling constants
    - Perhaps the identity of the LSP
    - Even if the first evidence for SUSY comes from LHC, it will be important to study CPV in flavor physics at the scale of 10<sup>10</sup> to 10<sup>11</sup> B decays



#### SUSY mass spectra for the 9 Snowmass points & slopes





### Many SM extensions yield measurable effects in B physics



### Constraints on SUSY from existing measurements

- In order to obey the constraints from K decay:
  - Indirect CPV in  $K \to \pi\pi$  and  $K \to \pi\ell\nu_{\ell}$  decays:  $|\varepsilon|$  = (2.28 ± 0.02) × 10<sup>-3</sup>
  - Direct CPV in  $K \rightarrow \pi\pi$  decays: Re $|\epsilon'/\epsilon|$ =(1.66 ± 0.16) x 10<sup>-3</sup>
  - it is necessary to invoke one or more of the following:
    - Heavy squarks:  $\tilde{m} \gg 100 \text{ GeV}$
    - Universality:  $\Delta m_{\tilde{s}\tilde{d}}^2 \ll \tilde{m}^2$  Alignment:  $|K_{12}^d| \ll 1$

    - Approximate CP: CPV phases are small
  - All viable models of SUSY-breaking use one or more of these mechanisms
  - Two other measurements:
    - $A_{CP}$  in  $B^0 \rightarrow J/\psi K^0_S$  decay: Im  $\lambda_{\psi K} = 0.734 \pm 0.054$
    - Limits on EDM's (through T violation and CPT)
    - impose serious additional constraints
  - For example, A<sub>CP</sub> effectively kills Approximate CP models
  - EDM limits imply that the source of CPV beyond the Standard Model in models with minimal flavor violation is Yukawa couplings, which can be flavor dependent



### Effects of SUSY breaking on CPV in flavor physics

- Specific models produce specific CPV patterns
- There are a variety of models of SUSY breaking on the market
- Many of these models generate specific, calculable CP-violating effects in hadronic and rare B decays
- Other extensions (extra dimensions, Little Higgs,....) have the same sorts of effects, although they often have distinguishable patterns
- In order to exploit CP violation as a tool to search for physics beyond the Standard Model we must do two things:
  - Achieve the highest meaningful precision on CPV ( $\alpha, \beta, \gamma$ ) measurements of the B unitarity triangle
    - This requires several x 10 ab<sup>-1</sup>
  - Measure kinematic distributions and CP-violating (and sometimes CPconserving) asymmetries in very rare decays with branching fractions of <10<sup>-5</sup>, both inclusive and exclusive
  - These are decay modes such as  $B^0 \to K \ell^+ \ell^-$  where we have at present only a handful of events

Babar ™ and © Nelvana

### Many CP asymmetries can be changed by SUSY

TABLE II. CP phases for B decays.  $\phi_{SM}^D$  denotes the decay phase in the SM; for each channel, when two amplitudes with different weak phases are present, one is given in the first row, the other in the last one, and the ratio of the two in the  $r_{SM}$  column.  $\phi_{SUSY}^D$  denotes the phase of the SUSY amplitude, and the ratio of the SUSY to SM contributions is given in the  $r_{250}$  and  $r_{500}$  columns for the corresponding SUSY masses.

| Incl.                                     | Excl.                              | $\phi^{\scriptscriptstyle D}_{ m SM}$ | $r_{ m SM}$                             | $\phi^D_{ m SUSY}$     | r <sub>250</sub> | r <sub>500</sub> |
|-------------------------------------------|------------------------------------|---------------------------------------|-----------------------------------------|------------------------|------------------|------------------|
| $b \rightarrow c \overline{c} s$          | $B \rightarrow J/\psi K_S$         | 0                                     | —                                       | $\phi_{23}$            | 0.03 - 0.1       | 0.008 - 0.04     |
| $b \rightarrow s \overline{s} s$          | $B \rightarrow \phi K_S$           | 0                                     | ——————————————————————————————————————— | $\phi_{23}$            | 0.4 - 0.7        | 0.09 - 0.2       |
| $b \rightarrow u\overline{u}s$            |                                    | Tree $\gamma$                         | 0.000 0.00                              | ,                      | 0.4 0.7          | 0.00 0.0         |
| , , <del>,</del>                          | $B \rightarrow \pi^{\circ}K_S$     |                                       | 0.009 - 0.08                            | $\phi_{23}$            | 0.4 - 0.7        | 0.09 - 0.2       |
| $b \rightarrow dds$                       |                                    | Penguin 0                             |                                         |                        |                  |                  |
| $b \rightarrow cud$                       | 0 0                                | 0                                     |                                         |                        |                  |                  |
|                                           | $B \rightarrow D_{CP}^0 \pi^0$     |                                       | 0.02                                    | _                      | _                | -                |
| $b \rightarrow u \overline{c} d$          |                                    | γ                                     |                                         |                        |                  |                  |
|                                           | $B \rightarrow D^+ D^-$            | Tree 0                                | 0.03 - 0.3                              |                        | 0.007 - 0.02     | 0.002 - 0.006    |
| $b \rightarrow c \overline{c} d$          |                                    |                                       |                                         | $oldsymbol{\phi}_{13}$ |                  |                  |
|                                           | $B  ightarrow J/\psi  \pi^0$       | Penguin $\beta$                       | 0.04 - 0.3                              |                        | 0.007 - 0.03     | 0.002 - 0.008    |
|                                           | $B  ightarrow \phi  \pi^0$         | Penguin $\beta$                       |                                         |                        | 0.06 - 0.1       | 0.01 - 0.03      |
| $b \rightarrow s\overline{s}d$            |                                    |                                       |                                         | $\phi_{13}$            |                  |                  |
|                                           | $B \rightarrow K^0 \overline{K}^0$ | u-Penguin $\gamma$                    | 0 - 0.07                                |                        | 0.08 - 0.2       | 0.02 - 0.06      |
| $b \rightarrow u \overline{u} d$          | $B \rightarrow \pi^+ \pi^-$        | Tree $\gamma$                         | 0.09 - 0.9                              | $\phi_{13}$            | 0.02 - 0.8       | 0.005 - 0.2      |
| $b \rightarrow d\overline{d}d$            | $B  ightarrow \pi^0 \pi^0$         | Penguin $\beta$                       | 0.6 - 6                                 | $\phi_{13}$            | 0.06 - 0.4       | 0.02 - 0.1       |
|                                           | $B \rightarrow K^+ K^-$            | Tree $\gamma$                         | 0.2 - 0.4                               |                        | 0.04 - 0.1       | 0.01 - 0.03      |
| $b\overline{d} \rightarrow q\overline{q}$ |                                    |                                       |                                         | $\phi_{13}$            |                  |                  |
| 11                                        | $B \rightarrow D^0 \overline{D}^0$ | Penguin $\beta$                       | only $\beta$                            |                        | 0.01 - 0.03      | 0.003 - 0.006    |

Ciuchini, Franco, Martinelli, Masiero, & Silvestrini

Babar ™ and © Nelvana BABAR D. Hitlin Royal Society of Edinburgh February 4, 2004

# Pattern of deviations from SM predictions

Minimal (MFV) or non-minimal flavor violation (non-MFV):

- MFV flavor/CP violation as in Standard Model (CKM), in Yukawa couplings
  - 2HDM, MSSM w/ flavor blind SUSY breaking
- non-MFV
  - 2HDM with tree level FCNC, 4<sup>th</sup> generation, VLdQ (tree level FCNC to the Z), generic MSSM w/o R-parity

|                                                           | Unitarity triangle                |       |              | Rare decays                          |                                           |                                          |
|-----------------------------------------------------------|-----------------------------------|-------|--------------|--------------------------------------|-------------------------------------------|------------------------------------------|
|                                                           | <i>B<sub>d</sub></i><br>unitarity | ε     | $\Delta m_s$ | $\Delta A_{CP} \\ B \ncong \phi K_s$ | $B \rightarrow M_s \gamma$<br>indirect CP | $b \rightarrow s\gamma$ direct <i>CP</i> |
| mSUGRA                                                    | closed                            | small | small        | small                                | small                                     | small                                    |
| $\frac{SU(5) SUSY}{GUT + \nu_R \text{ (degenerate)}}$     | closed                            | large | small        | small                                | small                                     | small                                    |
| $\frac{SU(5) SUSY}{GUT + \nu_R \text{ (non-degenerate)}}$ | closed                            | small | large        | large                                | large                                     | small                                    |
| U(2) Flavor symmetry                                      | large                             | large | large        | large                                | large                                     | sizable                                  |
|                                                           | Alex and                          |       | 1114-0       | 0                                    | kada – SLAC 10 <sup>36</sup> V            | Workhop                                  |

bar <sup>™</sup> and © Nelvana

#### Squark mass matrix (d sector) and current constraints



### Gluino contribution to $B \rightarrow \phi K_S$



The contribution from the penguin diagram is dominant.

$$H = -C_8^R \frac{g_s}{8\pi^2} m_b \overline{s_R} \sigma^{\mu\nu} T^A b_L G^A_{\mu\nu}$$

Mass insertion approximation

$$C_8^R = \frac{\pi \alpha_s}{m_{\tilde{q}}^2} \frac{m_{\tilde{g}}}{m_b} (\delta_{RR}^{(d)})_{23} (\delta_{LR}^{(d)})_{33} (\frac{1}{3}M_1(x) + 3M_2(x))$$

$$(\delta_{LL}^{(d)})_{23} = \left( m_{\tilde{d}_L}^2 \right)_{23} / m_{\tilde{q}}^2, \quad (\delta_{RR}^{(d)})_{32} = \left( m_{\tilde{d}_R}^2 \right)_{32} / m_{\tilde{q}}^2,$$
$$(\delta_{LL}^{(d)})_{33} = m_b \left( A_b - \mu \tan \beta \right) / m_{\tilde{q}}^2,$$

Double mass insertion LR + RR is dominant

Babar <sup>™</sup> and © Nelvana

#### Measuring CPV in radiative decays requires large samples



Standard Model:  $A_{CP}(B \rightarrow X_s \gamma) \sim 0.6\%$ but can be larger in a variety of SUSY models



Bartl, Gajdosik, Lunghi, Masiero, Porod, Stremnitzer and Vives, hep-ph/0103324

February 4, 2004

#### Limit on $V_{td}/V_{ts}$



#### $b \rightarrow s\gamma + d\gamma$ - inclusive $A_{CP}$

- Can only be done in e<sup>+</sup>e<sup>-</sup>
- Events identified by high energy photon and lepton tag of other B-decay
  - Use lepton charge to tag flavor
- No discrimination between  $B \rightarrow X_s \gamma$  and  $B \rightarrow X_d \gamma$
- There is a significant mistag rate due to mixing and cascade decays
- $w = 0.13 \Rightarrow 35\%$  increase in raw statistical error
- Systematic uncertainties from detector charge asymmetries and background asymmetries - measured from data samples and limited by statistics
- Systematic *B*-background and theoretical modeling are insignificant compared to  $\mathcal{B}(B \rightarrow X_s \gamma)$  measurement
- It is possible to reach an interesting level of precision

| Luminosity<br>[ab <sup>-1</sup> ] | Statistical error $[\delta A_{CP}]$ | Systematic error $[\delta A_{CP}]$ |
|-----------------------------------|-------------------------------------|------------------------------------|
| 0.1                               | 0.1                                 | 0.01                               |
| 1                                 | 0.03                                | 0.003                              |
| 10                                | 0.01                                | 0.001 (?)                          |



#### $b \rightarrow s\ell^+\ell^-$ via exclusive modes $B \rightarrow K^{(*)}\ell^+\ell^-$



- Solid line+blue bands: SM range ( $\pm 35\%$ ); Ali et al. form factors
- Dotted line: SUGRA model ( $R_7 = -1.2, R_9 = 1.03, R_{10} = 1; R_i = C_i/C_i^{\text{SM}}$ )
- Long-short dashed line: SUSY model ( $R_7 = -0.83$ ,  $R_9 = 0.92$ ,  $R_{10} = 1.61$ )

Typical Standard Model branching fractions: (other models vary by up to 30%, largely due to form factor uncertainties

Exclusive decays:

$$\mathcal{B}(B \to K\ell^+\ell^-) = (0.35 \pm 0.12) \times 10^{-6}$$
$$\mathcal{B}(B \to K^*e^+e^-) = (1.58 \pm 0.49) \times 10^{-6}$$
$$\mathcal{B}(B \to K^*\mu^+\mu^-) = (1.19 \pm 0.39) \times 10^{-6}$$

Inclusive decays:

$$\mathcal{B}(b \to se^+e^-) = (6.9 \pm 1.0) \times 10^{-6}$$
$$\mathcal{B}(b \to s\mu^+\mu^-) = (4.2 \pm 0.7) \times 10^{-6}$$

Ali, Lunghi, Greub & Hiller, hep-ph/0112300

**NNLO** 

Shape of  $m_{\ell+\ell}$  distribution is sensitive to presence of new physics

Babar ™ and © Nelvana

D. Hitlin Royal Society of Edinburgh

February 4, 2004

#### BABAR and Belle have made first measurements of branching fractions



#### Restricting dilepton mass reduces uncertain long distance contributions



#### $A_{FB}$ in $B \rightarrow K^* \ell^+ \ell^-$ is very sensitive to new physics



#### (More) model-independent analysis of NP (pseudo)scalar couplings

New Physics scalar and pseudoscalar couplings can result in a difference in  $R_{K,K^*,x_s} = \frac{\mathcal{B}(B \rightarrow (K,K^*,x_s)e^+e^-)}{\mathcal{B}(B \rightarrow (K,K^*,x_s)\mu^+\mu^-)}$ 

from unity.  $R_{K,K^*,x_s}$  is correlated with the (unobserved) rate  $\mathcal{B}(B_s \rightarrow \mu^+ \mu)$ 





#### Measuring $A_{FB}$ at low $\hat{s}$ requires a large data sample

| $\begin{array}{c} A_{FB} \\ X_{s}e^{+}e^{-}+X_{s}\mu+\mu^{-} \end{array}$ | 500 fb <sup>-1</sup> | 1000 fb <sup>-1</sup> | 10 ab <sup>-1</sup> | 50 ab <sup>-1</sup> |
|---------------------------------------------------------------------------|----------------------|-----------------------|---------------------|---------------------|
| ŝ < ŝ <sub>0</sub>                                                        | -0.02 ± 0.17         | -0.02 ± 0.12          | -0.017 ± 0.039      | -0.017 ± 0.017      |
| ŝ > ŝ <sub>0</sub>                                                        | 0.17 ± 0.22          | 0.17 ± 0.16           | 0.173 ± 0.050       | 0.173 ± 0.022       |

Is there a zero? If yes, where is it?



#### Model-independent extraction of C9, C10 from $A_{FB}$ in $K^*ll$

C7 fixed by future precise measurement of B(b sg)



### Super B Factory measurement precision on Kll, K\*ll and sll

|                        |                | 2 ab-1 | 10 ab-1 | 50 ab-1 |
|------------------------|----------------|--------|---------|---------|
| 11                     | 100            | (%)    | (%)     | (%)     |
| All ŝ                  | Kl+l-          | 5.4    | 2.4     | 1.1     |
| Excluding              | <i>K*l+l</i> - | 7.0    | 3.1     | 1.4     |
| $J/\psi_{1}, \psi(2S)$ | sl+l-          | 4.5    | 2.0     | 0.9     |
| Low ŝ                  | Kl+l-          | 6.9    | 3.1     | 1.4     |
| 0.05< <i>ŝ</i> <0.25   | <i>K*l+l</i> - | 9.9    | 4.4     | 2.0     |
| 1                      | sl+l-          | 7.5    | 3.4     | 1.5     |
| High ŝ                 | Kl+l-          | 11.5   | 5.1     | 2.3     |
| <i>ŝ</i> >0.65         | $K^{*l+l-}$    | 13.8   | 6.2     | 2.8     |
|                        | sl+l-          | 11.4   | 5.1     | 2.3     |

Based on HFAG branching fractions and statistical errors and BABAR relative efficiency vs s Detector systematics limited for absolute rate Likely to be limited by theory systematics for absolute rate

J. Berryhill

Babar ™ and © Nelvana

## Probe of SUSY in $B^0 \to K^* \ell^+ \ell^-$ and $B^0 \to \rho \ell \nu$

$$R_{i}(s) = \frac{d\Gamma_{H_{i}}^{B \to K^{*} l^{+}l^{-}}/ds}{d\Gamma_{H_{i}}^{B \to \rho l\bar{\nu}}/ds} \quad (i = 0, -1, +1)$$





## Comparison of 1 year yields - BTev and Super B Factory

| Mode                                                         | BTe              | eV    | Super <i>B</i>      |                     |  |
|--------------------------------------------------------------|------------------|-------|---------------------|---------------------|--|
|                                                              | Yield Tagged     |       | Yield               | Tagged              |  |
| $B_s \rightarrow J/\psi \eta^{(\cdot)}$                      | 12650            | 1645  |                     | -                   |  |
| $B^- \rightarrow \phi K^-$                                   | 11000            | 11000 | 14000               | 14000               |  |
| $B^0 \rightarrow \phi K_s$                                   | 2000             | 200   | 5000                | 1500                |  |
| $B^0 \rightarrow K^* \mu^+ \mu^-$                            | 2530             | 2530  | ~1000               | ~1000               |  |
| $B_s \rightarrow \mu^+ \mu^-$                                | 6                | 0.7   |                     |                     |  |
| $B^0 { ightarrow} \mu^+ \mu^-$                               | 1                | 0.1   | 0                   | -                   |  |
| $D^{*+} \rightarrow \pi^+ D^0$ , $D^0 \rightarrow K^- \pi^+$ | ~10 <sup>8</sup> | ~108  | 1.6x10 <sup>7</sup> | 1.6x10 <sup>7</sup> |  |



### A BTeV-generated comparison (updated from 10<sup>34</sup>)

• Number of flavor tagged  $B^0 \rightarrow \pi^+ \pi^- (B=0.45 \times 10^{-5})$ 

|              | $\mathcal{L}(\mathrm{cm}^{-2}\mathrm{s}^{-1})$ | σ      | $B^{0}/10^{7}$ s     | Е     | ЕD <sup>2</sup> | Tagged<br>events |
|--------------|------------------------------------------------|--------|----------------------|-------|-----------------|------------------|
| Super B      | 10 <sup>36</sup>                               | 1.1 nb | $1.1 \times 10^{10}$ | 0.45  | 0.26            | 5600             |
| <b>B</b> TeV | $2 \times 10^{32}$                             | 100 µb | $1.5 \times 10^{11}$ | 0.021 | 0.1             | 1426             |

• Number of  $B^- \rightarrow D^0 K^-$  (Full product  $B=1.7 \times 10^{-7}$ )

|              | $\mathcal{L}$ (cm <sup>-2</sup> s <sup>-1</sup> ) | σ      | $B^{0}/10^{7}$ s     | Е     | Events |
|--------------|---------------------------------------------------|--------|----------------------|-------|--------|
| Super B      | 10 <sup>36</sup>                                  | 1.1 nb | $1.1 \times 10^{10}$ | 0.4   | 500    |
| <b>B</b> TeV | $2 \times 10^{32}$                                | 100µb  | $1.5 \times 10^{11}$ | 0.007 | 176    |

•  $B_s$ ,  $B_c$  and  $A_b$  studies are, of course, not done at the  $Y(4S) e^+e^-$ 

Babar ™ and © Nelvana

## At $10^{36}$ , $e^+e^-$ is fully competitive in rare decay studies

|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hadron                | Collider Ex        | periments | $e^+e^-B$               | Factories              |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|-----------|-------------------------|------------------------|
| Decay Mode                          | Branching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CDF                   | BTeV*              | ATLAS     | BABAR                   | $10^{36}$              |
|                                     | Fractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>D0</b>             | LHCb               | CMS       | BELLE                   |                        |
| S. A. S. S. S. S.                   | - Barris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(2 \text{ fb}^{-1})$ | $(10^7 \text{ s})$ | (1 Year)  | $(0.5 \text{ ab}^{-1})$ | $(10 \text{ ab}^{-1})$ |
| $B \to X_s \gamma$                  | $(3.3\pm0.3)\times10^{-4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270.70                |                    |           | 11K                     | 220K                   |
| ALC: NO.                            | AND A DESCRIPTION OF A |                       | 1.11               |           | Contractory of          |                        |
| 1 1 1 1 T 1 1                       | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 1.2 F. M.          |           | 1.7K                    | 34K                    |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                    |           | (B Tagged)              | (B Tagged)             |
| $B \to K^* \gamma$                  | $5 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170                   | 25K                |           | 6K                      | 120K                   |
| $B  ightarrow  ho(\omega) \gamma$   | $2 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                   | 1.1.1.1            | 10-11-14  | 300                     | 6K                     |
| $B \to X_s \mu^+ \mu^-$             | $(6.0 \pm 1.5) \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     | 3.6K               | 1000      | 300                     | 6K                     |
| $B \to X_s e^+ e^-$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.1.1                 |                    | 1         | 350                     | 7K                     |
| $B \to K^* \mu^+ \mu^-$             | $(2\pm 1) \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60-150                | 2.2K/4.5K          | 665/4.2K  | 120                     | $2.4\mathrm{K}$        |
| $B \to K^* e^+ e^-$                 | 100 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 1.5 7.11           |           | 150                     | 3K                     |
| $B \to X_s \nu \overline{\nu}$      | $(4.1 \pm 0.9) \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | for a lar          |           | 8                       | 160                    |
| $B \to K^* \nu \overline{\nu}$      | $5 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17000                 |                    |           | 1.5                     | 30                     |
| $B_d^0 \to \tau^+ \tau^-$           | $10^{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                    |           |                         |                        |
| $B_s^0 \to \mu^+ \mu^-$             | $10^{-9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/1.5-6               | 5/11               | 9/7       | 1                       |                        |
| $B_d^0 \to \mu^+ \mu^-$             | $8 \times 10^{-11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0/0                   | 1/2                | 0.7/20    | S 2                     |                        |
| B  ightarrow 	au  u                 | $5 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                    |           | 17                      | 350                    |
| $B \rightarrow \mu \nu$             | $1.6 \times 10^{-7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                    |           | 8                       | 150                    |
| $B^0 \longrightarrow \gamma \gamma$ | $10^{-8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Sec. 1999          |           | 0.4                     | 8                      |

\* Two arm BTeV

Babar ™ and © Nelvana BABAR D.

### Super B Factory activity at KEK, SLAC

- The Directors of SLAC and KEK have encouraged cooperation between BABARians and Bellies on future activities, since they believe that "there will be at most one new high luminosity B Factory"
  - The core of a Super B Factory effort will likely be drawn from the BABAR and Belle Collaborations (others are certainly welcome)
    - Accelerator and detector R&D is underway in both labs and at several of the collaborating institutions

#### Workshops

- KEK has held five workshops on physics, detector and accelerator aspects
- SLAC has held two workshops on physics potential
- There was a BABAR/Belle joint workshop in Hawaii in mid-January
- There was an ICFA Accelerator Workshop at SLAC in October, focusing on very high luminosity e<sup>+</sup>e<sup>-</sup> circular machines
- There will be a Belle/KEK-B upgrade LOI in a few months
- There will be a BABAR/PEP-II upgrade LOI by the end of 2004



### Technically limited schedule



#### Tagged $\pi^+\pi$ scenarios



### Tagged $\phi K_s$ scenarios



#### Conclusions

- If the scale of new physics is below 1 TeV, as motivated by our current understanding of the Higgs mechanism, there will be measurable effects in the heavy quark/heavy lepton sector
  - LHC can yield information on masses and couplings of new particles by direct production
  - Information on squark off-diagonal couplings requires detailed studies of heavy quark decays at Super B Factories or dedicated hadronic experiments
- The effects of new physics loops can be seen in rare decay branching fractions and kinematic distributions and in *CP*-violating asymmetries in channels with very small branching fractions
- The new generation of experiments at hadronic accelerators will doubtless extend the fruitful programs of the current *B* Factories
- Upgraded *B* Factory accelerators and detectors can, early in the next decade, provide unique high precision measurements as well as results complementary to those of hadronic experiments

Babar ™ and © Nelvana