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Tests of the Flavour Sector
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• Unitarity triangle fit [Höcker et al. ’03] already con-

strains new sources of flavour and CP violation

• Only the ∆F = 2 constraints test the quantum level,

but they suffer from large hadronic uncertainties

Find theoretically clean decays
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Inclusive B̄ → Xsγ and B̄ → Xsl+l− decays



FCNC Decays b → sγ and b → sl+l−
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Precision test of the flavour sector
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Enhanced sensitivity to new physics
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• Charged Higgs contribution enhance

b → sγ

• Different new physics contributions have

to cancel



Two Problems: Bound States and Large Logs

• We can only observe decays of bound

states ⇒ decay at parton level may not

approximate the hadronic decay

• Study inclusive B̄ → Xsγ and

B̄ → Xsl+l− decays

• For B̄ → Xsγ we know only the integral

over the spectrum
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• Large logs ⇒ straightforward

perturbation theory unreliable

• Use renormalization group to resum

leading and next-to-leading logs



Inclusive B̄ → Xsγ and B̄ → Xsl
+l− Decays

Sum over all Xs final states
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mb � ΛQCD hadron binding energy
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Contribution of external states drops out

• For mb → ∞ is Γ[B̄ → Xsγ] ≈ Γ[b → sγ] + Γ[b → sγg]δ + . . . [Chay et al. ’90, Manohar

et al. ’93]

• 1/m2
b and 1/m2

c corrections can be added systematically [Falk et al. ’93, Bigi ’92,

Voloshin ’97, Khodjamirian et al. ’00]

• Treatment of B̄ → Xsl+l− is similar to B̄ → Xsγ [Ali et al. ’96, Bauer et al. ’99, Chen

et al. ’97, Buchalla et al. ’97]

⇒ High precision is possible!



Effective Field Theories

At high scales µ0 ∼ MW the full theory

contains heavy W, t, . . . and light g, b, . . .

fields:

Lfull = LH(h, l) + L(l).

P
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At a low scale µ < µ0 we obtain an effective

Lagrangian:

Leff = L(l) + δL(l)
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The calculation takes three steps

• Matching of Lfull and Leff at µ0 gives δL(L)

• With the help of the Renormalization Group Equation (RGE) we can relate the effective

Lagrangian at the high scale to the low scale one

Leff at µ0 → Leff at µ

• Calculation of the matrix elements



QCD Matching
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• Current-current

Q1 = (s̄LγµT acL)(c̄LγµT abL) ,

Q2 = (s̄LγµcL)(c̄LγµbL) ,

• QCD Penguin

Q3 = (s̄LγµbL)
q
(q̄γµq) ,

Q4 = (s̄LγµT abL)
q
(q̄γµT aq) , . . .

• Magnetic

Q7 = e/g2 mb(s̄LσµνbR)Fµν ,

Q8 = 1/g mb(s̄LσµνT abR)Ga
µν ,

• Semileptonic

Q9 = e2/g2 (s̄LγµbL)
`
(¯̀γµ`) ,

Q10 = e2/g2 (s̄LγµbL)
`
(¯̀γµγ5`) .



Scale Dependence of the Wilson Coefficients

• Wilson coefficients are renormalized

Ci,B = ZjiCj

and the renormalization constants are expanded

Zij = δij +
∞

k=1
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• The scale dependence of the Wilson coefficients

µ d
dµ

Ci(µ) = γjiCj(µ)

is given by the anomalous dimension matrix

γij = Zik µ d
dµ

Z−1
kj
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The scale dependence is governed by Z
(k,l)
ij



Scale Dependence of B̄ → Xsγ

• At LO the branching ratio can be written

BR[B̄ → Xsγ]Eγ>E0
=

BR[B̄ → Xceν̄]exp×

|V ∗

tsVtb|
2

|Vcb|2
6αQED

πg(z)
|C

(0)eff
7 (µ)|2

• At NLO we get a αs log(µb/mb) term

form the matrix elements

• This reduces the scale uncertainty

drastically



In B̄ → Xsγ a pecularity arisis

The one loop mixing into the magnetic Operators vanishes
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Leading Order needs two loop calculation

NLO needs

• 2-loop matching [Adel, Yao ’93; Greub,

Hurth ’97; Buras et al. ’98]

• 3-loop running [Chetyrkin, Misiak, Münz

’98; Gambino, Gorbahn, Haisch ’03]

• 2-loop matrix elements [Greub, Hurth,

Wyler ’96, Buras et al. ’01, Asatrian et

al. ’04]

• Bresmstrahlung [Ali, Greub ’93; Pott ’96]
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charm mass dependence starts at NLO

b s
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γ
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Q2

g First charm depenen-

dent Matrix Element is

2 loop:

• Formally, any definition for mc can be

used

• Gambino Misiak pointed out to use mc

in MS at µ ∼ mb/2



Beyond NLO QCD

Electroweak corrections

• No ln(m2
b/m2

e) if one uses αonshell
em as overall normalisation [Czarnecki, Marciano ’98]

• αe/αs ln(m2
W /m2

b) negligible [Kagan, Neubert ’99; Baranowski Misiak ’00]

• Matching reduces Γ[b → sγ] by −1.5% for MHiggs = 115GeV [Gambino, Haisch ’00 ’01]

Nonperturbative corrections

• 1/m2
b amounts to −3%, 1/m2

c to +2.5%

The dependence on the defintion of mc (formally NNLO)

• if we use mc in MS at µ ∼ mb/2 we get +10%:

BR(B̄ → Xsγ)th = (3.70 ± 0.30) × 10−4



Bounds on the Charged Higgs Mass

Type II 2HDM

• Always positive contribution to the

branching ratio

• Lower bound on mH saturates for

tanβ ∼ 5

• If one takes pole mass interpretation

bound gets weaker mH > 280GeV

2HDM II 6= MSSM

• non decoupling effects are parametrized

by

ε =
αs

6π

µ

mg̃

f(m
b̃i

, mg̃)



Towards a NNLO prediction of b → sγ

To settle the mc dependence we have to go to NNLO, which requires the follwing calculations:

• 2-loop matching of the 4-quark operators [Bobeth, Misiak, Urban ’00]

• 3-loop matching of the magnetic operators [Misiak, Steinhauser ’04]

• 3-loop mixing of the 4-quark operators [Gorbahn, Haisch in preparation]

• 4-loop mixing into the magnetic operators and 3-loop selfmixing [Gorbahn, Haisch, . . . ]

• 3-loop matrix elements of the 4-quark operators [Bieri, Greub, Steinhauser ’03; Misiak,

Steinhauser]

• 2-loop matrix elements of the magnetic moment operators [Greub, Hurth, Asatrian]



Implications for B̄ → Xsγ

• The complete NLO prediction of B̄ → Xsγ has been done independently by at least two

groups

• This is in particular important since the LO analysis suffers from 25% scale uncertainties

[Buras ’93]

• The NLO SM prediction of B̄ → Xsγ is in good agreement with experiment

BRth = (3.70 ± 0.30) × 10−4 ∼ (3.34 ± 0.38) = BRexp

• With improving experimental results the definition of the charm quark mass must be solved

• This means a NNLO calculation is becoming necessary and has been started recently

• This is also important to stringently constraint new Physics



The B̄ → Xsl
+l− decay

• Belle and BaBar have recently aounced a clear evidence of B̄ → Xsl+l−

BRexp(B̄ → Xsl+l−) = 6.2 ± 1.1+1.6
−1.3 × 10−6

• Non-perturbative corrections can be controlled by

– the heavy quark expansion for ΛQCD/mb

– kinematical cuts to avoid cc̄ intermidate states (B → Xsc̄c → Xsl+l−):

low :q2 ≡ m2
l+l−

∈ [1GeV2, 6GeV2]; high :q2 > 14.4GeV2; use :ŝ = q2/m2
b

• To cancel m5
b dependence and avoid charm mass dependence normalise

BRll =
BR[B̄ → Xulν̄]
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Completing the NNLO Analysis of B̄ → Xsl
+l−

Recently the NNLO Calculation has been

(nearly) completed

• 2-loop matching conditions [Bobeth,

Misiak, Urban ’00]

• 2-loop matrix elements of Q1,Q2 and

bremsstrahlung [Asatrian et al. ’02 ’03;

Ghinculov et al. ’03]

• 2-loop matrix element of Q9 [Bobeth,

Gambino, Gorbahn, Haisch ’03]

• 3-loop evolution [Gambino, Gorbahn,

Haisch ’03]

• 2-loop matrix elements of Q1 and Q2 for

the high q2 region [Ghinculov, Hurth,

Isidori, Yao ’03]
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Electroweak corrections B̄ → Xsl
+l−

• Matching corrections known [Gambino,

Haisch ’00 ’01]

• 2-loop QED QCD evolutiuon [Bobeth,

Gambino, Gorbahn, Haisch ’03]

Contributions BRll

NLO (1.53 ± 0.27)10−6

Low q2 (1.53 ± 0.20)10−6

For the high q2 region [Isidori ’04]

Contributions BRll (q2 > 14.4GeV2)

Without QED (4.04 ± 0.78)10−7

Errors come mainly of parametric nature
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Conclusions

B̄ → Xsl+l−

• The extrapolated BR = 4.2 ± 0.7 × 10−6 agrees with BRexp = 6.2 ± 1.1+1.6
−1.3 × 10−6

• The NNLO calculation of B̄ → Xsl+l− is completed

• The theory predicion for the clean windows can not be directly confronted with the

experimental result

• Future experiments should measure in both regions seperately

B̄ → Xsγ

• The Standard Model is consistent with the current experimental data

• The main uncertainty of the theory resides in the perturbative side (mc)

• NNLO calculation will solve this


