Search for two-gluino bound states

V.Kartvelishvili Lancaster University, UK

Gluinos are supersymmetric partners of gluons:

- \clubsuit gluon g has spin 1, gluino \tilde{g} has spin 1/2
- gluino must be self-conjugate (Majorana) fermion to have just 2 degrees of freedom
- gluino couplings can be derived from corresponding gluon couplings:

Coupling strength is the usual α_s , irrespective of SUSY breaking.

Why talk about gluinos here?

Why talk about gluinos on a meeting dedicated to quarks and gluons? Because quarks and gluons don't have a relative closer than gluinos!

Just like quarks:

- gluinos are fermions
- gluinos are coupled to gluons
- gluinos carry a conserving quantum number (R parity)

Just like gluons:

- gluinos are colour octets
- gluinos are coupled to all quark flavours with equal strengths
- gluinos are **not** coupled to leptons, photons, W,Z

What do we know about gluinos?

We know the quantum numbers and couplings, but we don't know its mass $m_{\tilde{g}}$ (in the absence of a good model for SUSY breaking).

And we don't know whether it exists or not.

But if it exists, we can predict all its properties.

Most important: what is the main decay mode of a gluino?

V. Kartvelishvili (Lancaster U)

What do the experiments say?

As always with SUSY, results of experimental searches are model-dependent.

Latest PDG plot: [PR D66, 910]

- It is significanly easier to look for gluinos if they are heavier than squarks.
- Weakly decaying gluinos are more difficult to find.
- BUT: weakly decaying gluinos should live long enough to form quarkonium-like bound states.

Gluino-gluino bound states?

Gluinos: strongly interacting fermions carrying a conserving quantum number really do resemble quarks. One-gluon exchange potential

$$V_{\tilde{g}\tilde{g}}(r) = K \frac{\alpha_s}{r}$$

can be attractive in no less than three different colour states:

$$8 \times 8 = 1 \oplus 8_S \oplus 8_A \oplus 10 \oplus \overline{10} \oplus 27$$

$$K : -3 - 3/2 - 3/2 = 0 = 0 = 1$$

Structure : $\delta_{ab} \ d_{abc} \epsilon^c \ f_{abc} \epsilon^c$

A typical annihilation decay rate of gluinonium $(\tilde{g}\tilde{g})$ with mass $M = 2m_{\tilde{g}}$: $\Gamma((\tilde{g}\tilde{g}) \rightarrow gg) \simeq \alpha_s^5 M$

which is larger than a free gluino in-the-flight decay rate, if $m_{\tilde{g}} < m_{\tilde{q}}$ (when all numerical constants are taken into account).

[Haber, Kane **PR 117**, 75; Keung, Khare **PR D29**, 2657; Kuhn, Ono **PL B142**, 436; Goldman, Haber **Physica 15D**, 181]

Is gluinonium "the next heavy quarkonium"?

Not exactly, but in certain aspects it gets very close.

Differences:

- Gluino is not (directly) coupled to leptons/ $\gamma/Z/W$
 - Only hadronic decays
 - $\bullet~{\rm No}~"{\rm golden-plated}"~\mu^+\mu^-$, e^+e^- , $\gamma\gamma~{\rm decay}~{\rm modes}$
 - Makes detection of bound states more difficult
- Gluino is a Majorana (rather that Dirac) fermion
 - 1 The $(\tilde{g}\tilde{g})$ wavefunction, space×spin×colour, must change sign under interchange of the gluinos
 - 2 C-parity of $(\tilde{g}\tilde{g})$ must be +1
- $1+2 \Rightarrow$ Only certain states can exist:

$$L + S = \text{even} \quad \text{for } 1, 8S$$

 $L + S = \text{odd} \quad \text{for } 8A$

So, what's the spectrum?

Spin-parity J^P of lowest allowed gluinonium states in the three sectors:

Colour-octet bound states?

The typical "Bohr radius" of these states is tiny:

$$r_B \simeq (\alpha_s \ m_{\tilde{g}}/2)^{-1} \simeq (10 \ \text{GeV})^{-1} \simeq 0.02 \ \text{fm}$$

Hence, 8_S and 8_A coloured states should behave a bit like heavy gluons and form colourless hadrons with gluons and quark (antiquark) pairs.

This may lead to:

- \clubsuit an $\mathcal{O}(1~{\rm GeV})$ overhead on gluinonium mass in these channels
- a complicated spectrum of "radiative" transitions between the three sectors, like

$$\psi_{\tilde{g}}^8 + \{q\bar{q}\}_8 \to \eta_{\tilde{g}}^0 + 2\pi$$

but all this may be virtually impossible to observe if the gluino is heavy, as the experimental resolution will smear everything out.

What are gluinonium decay modes?

Depending on the quantum numbers, one of these two dominate:

$$\Gamma(\eta_{\tilde{g}}^0 \to g \, g) = \frac{243}{8} \alpha_S^5 M \simeq 200 \text{ MeV} \qquad (\text{for } m_{\tilde{g}} = 225 \text{ GeV}, \ M \simeq 2m_{\tilde{g}})$$

$$\Gamma(\eta_{\tilde{g}}^8 \to g \, g) = \frac{243}{32} \alpha_S^5 M \simeq 50 \text{ MeV} \qquad \Gamma(\psi_{\tilde{g}}^8 \to q \bar{q}) = N_q \frac{27}{64} \alpha_S^5 M \simeq 20 \text{ MeV}$$

[VK et al, **ZP C43**, 509]

So, these are narrow resonances, with strong coupling to respective hadronic channels.

How could we see them?

- ✤ As narrow resonances in the two-gluon channel
- As narrow resonances in the quark-antiquark channel

The main problem is immediately evident:

- These channels have huge irreducible "generic" QCD backgroungs
- Other, reducible backgroungs should not be too important
- \clubsuit One should expect tiny signal-to-background ratios $\mathcal{O}(1\%)$ or smaller
- Thus, the best possible experimental resolution is vital

A few examples of processes which may have a chance:

- ♦ e^+e^- machines: Radiative decays of quarkonium
- Tevatron: as a peak in two (flavour-tagged?) jet invariant mass distribution
- ◆ LHC: as a peak in two (gluon) jet invariant mass distribution

What if gluino is very light?

Radiative decays of quarkonium:

CUSB experiment looked for resonant γ in Υ decays:

 $e^+e^- \rightarrow \Upsilon \rightarrow \gamma + \text{hadrons}$

Re-analysed with gluinonium in mind: Excludes gluinonium with masses between 3 and 7 GeV.

[Cakir, Farrar PRD 50, 3268]

What if there is a window between 25-35 GeV?

Possible allowed window for a (quasi)-stable glino with $m_{\tilde{g}} = 25 - 35$ GeV [Mafi, Raby PRD 62, 035003]

Gluinonium may be observed at LHC as an *s*-channel resonance in diffractive gluon-gluon scattering [Khoze et al, **EPJ C23**, 311]

Special selection rules imply that lowest possible states are ³P
 Effective width is small, S/B ratio does not look too promising:

$$\frac{S}{B} \simeq 1.5 \cdot 10^{-3} \left(\frac{1 \text{ GeV}}{\Delta}\right) \left(\frac{M}{60 \text{ GeV}}\right) \qquad [\Delta = \text{ resolution}]$$

RSE Workshop — 6 February 2003

V. Kartvelishvili (Lancaster U)

Tevatron: vector octet state?

At the Tevatron highest invariant masses can be reached in quark-antiquark annihilation subprocess

Good place to look for the vector, colour octet gluinonium $\psi_{\tilde{q}}^8$:

$$q + \bar{q} \to \psi^8_{\tilde{g}} \to Q + \bar{Q}$$

To get rid of the gluon-gluon jet background, heavy-flavour-tagged jets could be used

Signal-to-background ratio in this case is somewhat better:

$$\frac{S}{B} \simeq 1.5\pi \alpha_s^3 \left(\frac{M}{\Delta}\right) \simeq 0.1 \left(\frac{30 \text{ GeV}}{\Delta}\right) \left(\frac{M}{600 \text{ GeV}}\right)$$

[VK et al, PR D53, 6653]

RSE Workshop — 6 February 2003

V. Kartvelishvili (Lancaster U)

Tevatron I: results and simulations

Data from CDF: Two-jet invariant masses, untagged and *b*-tagged

A simple simulation for Tevatron II $\mathcal{L} = 1$ fb⁻¹, c, b-tagged

Smeared PYTHIA, M=450 GeV

V. Kartvelishvili (Lancaster U)

[Fermilab-Conf-95-275-E] RSE Workshop — 6 February 2003

(page 16)

LHC: is resolution good enough?

At the LHC gluon-gluon collisions dominate at all invariant masses

Good place to look for pseudoscalar gluinonia $\eta_{\tilde{q}}^0, \eta_{\tilde{q}}^8$:

$$g + g \to \eta_{\tilde{g}}^{0,8} \to g + g$$

The gluon-gluon jet background is now irreducible, but tight angular cuts excluding high $|\cos \theta^*|$ should help

Signal-to-background ratio in this case is not hopeless:

$$\frac{S}{B} \simeq 0.2\pi \alpha_s^3 \left(\frac{M}{\Delta}\right) \simeq 0.02 \left(\frac{30 \text{ GeV}}{\Delta}\right) \left(\frac{M}{600 \text{ GeV}}\right)$$

[VK et al, PR D53, 6653]

LHC: what are the expectations?

- Total effective width of all gg-coupled $(\tilde{g}\tilde{g})$ states is $\mathcal{O}(1 \text{ GeV})$
- At high masses, resolution $\Delta \sim \sqrt{M}$

Rough estimates:

- $\Delta=32~{\rm GeV}$ at $M=600~{\rm GeV}$
- $\Delta=50~{\rm GeV}$ at $M=2000~{\rm GeV}$
- ♦ Cut $|\cos \theta^*| < 2/3$ applied
- ♦ S/B ratio around 1-2%
- ♦ For $\mathcal{L} = 200 \text{ fb}^{-1}$ may reach $M = 3 \text{ TeV} \Rightarrow m_{\tilde{g}} = 1.5 \text{ TeV}$

- Bound states: complementing single gluino searches with very different phenomenology
- Reach may be comparable to single gluino searches
- On hadronic colliders, high statistics and good resolution are the keys (aren't they for anything in this business?)
- ◆ Half of the parameter space covered $[m_{\tilde{g}} < m_{\tilde{q}}]$
- Should be carried out even if (or especially if) single gluinos are detected
- ✤ Probably the most precise way of measuring the gluino mass $m_{\tilde{g}} = M/2$
- Real, dedicated searches for gluino-gluino bound states have not started yet
- ✤ I'll do my best to change this, but it may take years...