SIGNAL SIGNIFICANCE IN PARTICLE PHYSICS

Pekka K. Snervo
University of Toronto, Toronto,Canada

Abstract

The conceptof the “statistical significance”of an obseration, andhow it is
usedin particle physicsexperimentss reviewed. More properlyknovn asa
“p-value’ the statisticalfoundationgor this conceptarereviewed from afre-
guentisticperspectie. Thediscovery of thetop quarkatthe FermilabTevatron
Collider anda morerecentanalysisof datarecordedat Fermilabare usedto
illustratepracticalapplicationsof theseconcepts.

1 What Particle PhysicistsMean by Significance

Whenoneof your colleaguegpproachegou anddeclareghatshehasmadea “significant” obsenration,
intuitively thatmeanghatshehasobseredsomephenomenahoseinterpretatiorallows herto eliminate
or falsify oneor morehypothesesandusuallysupportoneor a smallnumberof alternatve hypotheses.
We furthermoreexpectthatthe obsenration hassuficient statisticalpower thatwe expectthatadditional
obsenrationsareunlikely to changetheseconclusions.Scientistshave thereforeattemptedo identify a
consistenstatisticalframevork in which we canquantifythis concepiof “significance.

In particle physics,this conceptof statisticalsignificancehasnot beenemployed consistentlyin
the mostimportantdiscoreriesmadeover the last quartercentury Examplesof the major discoveries
madeover an approximatelyl0 yearperiod betweerthe late 19705 andthe late 19805 illustrate this
point.

Let us considerfirst the discovery of the T meson(andthe b quark)in 1977 by L. Lederman
andcolleagueg1]. This wasmadethroughthe obserationof ;* = final statesn high-enegy proton-
nucleuscollisions at Fermilab,wherea large resonantignalwas obsered on top of a steeplyfalling
backgroundf dimuoncandidatesThe experimenterestimatedhatthey obsened a signalof approxi-
mately770eventsontop of anon-resonanbackgroundf 350 candidatesThey characterizethesignal
as“significant” but madeno attemptto quantify or explain exactly whatthey meant.

The discorery of the W~ bosonat CERN in 1983 by the UA1 collaboration[2] was madeby
observings eventsproducedn proton-antiprotorcollisionswherea high enegy electronor antielectron
wasobseredin coincidencewith a signaturefor a recoiling enegetic neutrino. The collaborationes-
timatedthe backgroundo these6 eventsasbeing“negligible” and claimeddiscorery of the expected
chaged weak intermediatevector boson. This obseration was subsequenthconfirmedby the UA2
collaboration.

Thediscorery of B mesonsn 1983 by the CLEO collaboration[3] wasperformedby carefully
reconstructinga variety of differentdecaymodesandillustratinganinvariantmasspeakat 5.4 GeV/c?.
The collaborationobsened a total eventrate of 17 eventson a backgroundf betweend and7 events.
They claimeddefinitive obserationof anew particle,but madeno statementhatquantifiedthestatistical
power of the obsenration.

As a final example,| notethe discorery of B® mesonflavour mixing in 1987 by the ARGUS
collaboration4]. The experimenterobsened24.8 + 7.6 + 3.8 unexpectedsame-sigrdileptonevents
versusatotal of 25.2 + 5.0 + 3.8 opposite-sigrdileptoncandidatesThey characterizedhis asa“3 ¢”
obsenration, namely that the probability that the obserned numberof same-sigrdileptoneventscould
have beenasgreator greaterthanthe obsered value was equivalentto the probability of a Gaussian
statisticbeingobsered at least3 standarddeviationsfrom its expectedmean(a probability of 1.35 x
1073).
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Thisbrief review illustratesthatquantifyingthestatisticalsignificanceor powerin seminalparticle
physicsmeasuremenis notuniformly done.lt alsoillustratesthatin atleasttheonecasan whichit was
done,the significancewas definedasthe probability* of the “null hypothesis’having beenresponsible
for theobsenration.

In this paper | will first review briefly theformal conceptof “statisticalsignificancé. | will then
discussseveral examplesthat illustrate the useof this conceptin particle physics. | do not have the
opportunityto review all of the techniqueghat have beenin recentuse, but refer the readerto other
articlesin theseproceedinggfor example,thereview of the C Ls methodby A. Read).

2 Formal Definitions of Significance

2.1 The FrequentistsPerspectve

The conceptof statisticalsignficanceis formally introducedin the context of hypothesistesting[5].
Supposeghatwe have two hypothesesH, and H1, anda measurementhosevalueis a teststatisticX
that,asarandomvariable,providessomediscriminationbetweerthesetwo hypothesesLet f,(X) and
f1(X) representhe probability distribution functionsfor X associateavith thetwo hypotheses.

Priorto makingameasuremerdf X, we wouldidentify a“critical region;” w, suchthatwe would
selecthypothesid; if X € w andH, otherwise We now have four possibleoutcomesvhenwe male a
measuremerdf X. If X € w andthehypothesid?; is true,thenwe have selectedhecorrecthypothesis.
If X € wandHj istrue,thenwe have incorrectlyconcludedhat A1 is true. This is knovn asa mistale
of thefirst kind, andthe probability for this decisionis

/ fo(X)dX = a. 1)
Xew

Theprobability o is known asthe“significance”of thetest.

We have two otherpossibilities. Thefirst is if we measureX ¢ w whenHj is true. In this case,
we would have madethe correctinference Finally, we have the casewhereX ¢ w andH; is true. This
is known asa mistale of the secondkind, andthe probability for thatdecisionis

| nxax g @
Xdw

The probability 1 — 8 is known asthe “power” of the test. The situationis illustratedin Fig. 1a). The
significancex is thereforea measureof the ability of a testto avoid mistalesof thefirst kind, whereas
the power 1 — 8 measureghe ability of a testto avoid mistales of the secondkind. In definingan
“optimimum” test, onewould like to chooseX andthe region w suchthat o and 8 are assmall as
possible.

2.2 Significancein Particle Physicists—The P-Value

The statisticaldefinition of significanceis madein the contet of choosingbetweentwo hypotheses.
However, the useof significancan particlephysicsdiscoveriesis in adifferentcontext. Thetypical case
is thatanexperimentmakesa measuremertdf theteststatisticX, say X,. Furthermoreusingthe same
notationasbefore,we assumeX hasa probabilitydensity fo(X) if thehypothesig is true. We further
assumeahatwe can categyorize obsenationsof X into thosethatare moreandlessconsistentwith H
(for the sale of discussion] will assumehatvaluesof X greaterthan X, arelesslikely given Hy). A
measuref theinconsisteng of the obsered value X with the hypothesisH, is thenthe probability

[ nxyax. 3)
X>Xo

IUnlessotherwisenoted,“probability” in this articlerefersto thefrequentisiefinition of this concept.
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Fig. 1: A schematiof the hypothesidestdescribedn thetext is shovn in a). The plot shawvs the probability densitiesfor X
underthe two hypothesedd, and H: andonepossiblechoicefor theregion w. The useof the Neyman-Pearsoitheoremis
illustratedin b), wheretheratio Iy is plottedasafunctionof X.

Thisis formally identicalto the definitionof the significancen Eq. 1 if we now definethecritical region
tobew = {X|X > Xy}, i.e. the probability of observinga valueof X equalto or greaterthanour
obsenration. This probability is formally known asthe “p-value” of the obseration, a corventionthat
the Particle DataGroupnow hasadopted6]. Theadwantageof usingtheformaltermfor this quantityis
thatit avoids confusionwith the conceptof significancedefinedin hypothesigests,wheretheregion w
is defineda priori, i.e. beforethe measuremeris made.

The p-valuefor a givenmeasuremerdanda specifichypothesidhasa numberof features.First, it
only dependsn the measuremerdndthe probability densityfor the hypothesis.It is not a hypothesis
test. It only providesa measuref the consisteng of the hypothesisandthe measurementn thatsense,
it is mostoftenquotedwhenonehasmadea measuremerthatappeargo be inconsistentvith a single
hypothesisA very smallp-valueis thenusedto supporttheinferencethatthe specifichypothesishould
berejected.

Referringthento the exampleof the discovery of B® mixing givenin Sectionl, we cannow say
thatthe p-valuefor the obseration for the non-mixinghypothesisvas1.35 x 10~3. Froma frequentist
perspectie, if onerejectedthe non-mixinghypothesisat this p-valueandit wasalwaystrue, thenone
would expectto bewrong(i.e., rejectthe correcthypothesispn averagel out of every 740times.

2.3 A FewMore Commentson HypothesisTesting

Althoughtheliteratureusesthe p-value of an obsenrationasa measuref its statisticalsignificancethe
conceptof hypothesidestingis animportantonein particle physics.Oneseest mostoftenusedin the
context whereoneis designingor proposingan experimentandwishesto characterizéhe experiments
ability to distinguishexisting and knowvn physicsphenomendsuchasthat predictedby the Standard
Model) from possiblenew physics[7].

In thosecasesa crucialaspecbf the experimentdesignis the selectionof the optimal statisticX
andthe optimal critical region. For a specificmeasuremenguchasthe obseration of a processabove
someexpectedbackgroundate,the choiceof X will dependon the measuremerandthe ingenuity of
the experimenter Onewould like to identify teststatisticsthat have quite differentprobability density
functionsfor the hypotheseyou wish to distinguishin orderto be ableto definea critical region with
the smallestpossiblea and 3. At the sametime, the decisionshouldbe informedby the effect of ary
systematiauncertaintieghat may degradethe separatiorbetweentwo hypothesesTo that extent, one
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oftenattemptdo identify statisticsthatarenot expectedio be affectedby systematiaincertainties.

2.4 Neyman-RearsonTheorem

Hypothesigestinghasan extensie literature,but relatively few generakesultshave beenidentifiedthat
canguide our judgement.Oneresult,knowvn asthe Neyman-PearsoiTheorem,is surprisinglyuseful,
andit is worth reviewing herefor theinsightit provides.

Supposeave have two hypothesesH, and H;, andwe have defineda teststatisticX. Thenfor
a given significanceq, we candefinethe region w which givesus optimal g (i.e., the smallestvalue
of 8 andthereforethe greatesstatisticalpower) by choosingw asfollows. We first form the ratio of
probability densityfunctionsfor thetwo hypotheses

fo(X)
fi(X)

The Neyman-Pearsoiftheoremthenconcludeghatthe optimal region w is the oneover which Iy (X)
is maximal,namelythatwe find the valuec, suchthatwhen

Iyn(X) =

(4)

w = {X[In(X) < ca}, ()

the probability of observingX € w is
| poix = (6)
Xew

This constructionis illustratedin Fig. 1b).

The Neyman-Pearsonest has one signficantlimitation—it is only valid for what are knowvn as
“simple hypothese$,or hypothesesvherethereare no unknavn parametershat would be estimated
from the data. In addition, sinceit is only applicablewhen comparingtwo hypothesesit cannotbe
emplosedin casesvhereyou have multiple alternatve hypotheseso consider However, despitethese
limitations, this theoremgives us considerablensight into the definition of the critical region. For
example,we canrelatetheratio of probabilitiesto theratio of likelihoodsof thetwo hypotheses:

fo(X)  Le(X)
f(X) LX)’

In(X) = (7)
where L;(X) arethe likelihoodfunctionsdefinedfor the two hypotheses = 0 and: = 1. This sug-
gestgthatthelikelihoodratio is onesourceof guidancefor definingcritical regionsthathave significant
(thoughperhapshot optimal) power.

3 The BayesianPerspective

Ourconsiderationsipto this pointhave beenfrom afrequentisperspectie, usingthe standardlefinition
of afrequentistprobability In calculatinga p-valuefor ameasurementnehasto assume hypothesis
andthendeterminghe probability (or probabilitydensity)for all possibleoutcomef themeasurement.

A Bayesiarstatisticiandoesnot considerdataotherthanthe single measurementHowever, for
eachhypothesisthe Bayesiancould definea credibility intenval thatreflectshis or her degree-of-belief
in eachhypothesisandthe ratio of thesecredibility intenals—whatis called the “Bayes discriminant
factor’—-becomes measuref therelative confidencenehasin thetwo hypothesisFormally, this ratio
is

P(Ho|X) _ Lo(X) mo(X) )
P(H|X) Li(X) m(X)’
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wherem(X) andm(X) aretheprior probabilitiesassociatedavith thetwo hypotheses.

This ratio canbe usedto rejectoneof the two hypothesesThe Bayesiansvould arguethatthere
is no benefitin attemptingto make anything but a relatve statementiboutthe degree-of-beliefof the
two hypothesesThus,thereis no directanalogyto the p-valuein this framavork. Theadwantageof this
perspectie is thatit avoidsthe needto understandhe probability densityof all possibleoutcomedor a
givenhypothesislt alsohasthe advantagethatary inferences/ou draw arelesssensitve to anoutcome
thathasa low probability regardlesof the hypothesisin suchcasesthe Bayesdiscriminantfactorstill
providesinformation,whereaghep-valueis nolongerveryinformative andcouldin factbe misleading.

Thedisadantageswith this Bayesiamapproachare,however, thatonehasto assumeprior distri-
butionsfor eachhypothesisandoneis only allowed to make relative confidencestatementsbouttwo
hypotheses For thesereasonspnefinds very limited useof the Bayesdiscriminantfactorin particle
physics.

4 P-Valuesand Experimental Design

The definition of significancein termsof a p-value for an obseration immediatelymales clear the
importanceof a priori decisionontherandomvariablesonewill measurendhow onewill definethose
obserationsthatpreferonehypothesigveranother A carefullydesignedxperimentwill identify these
andoptimizetheir choicebeforeary datais analyzed.

However, mary patrticle physicsexperimentsmake uniguemeasurementgsinggeneral-purpose
apparatuslesignedo studyalarge classof processesThus,it is difficult, andoftenimpossible o antic-
ipatewhatonewill obsere andhow. In fact,earlystudiesof the datawill oftenguidethe experimenters
to focusin specificfeatureghatappeaunusuabr unexpected.In this contet, theevaluationof ap-value
may prove very difficult.

A simpleexampleillustratesthis problem. Supposeonemeasuresin invariantmassspectrumn
a specificregion, say[m, my], andoneobseresa narrav enhancement a small massintenal, say
Am wide, of N, eventsaborve an expectedbackgroundf NN, events. In this case,it would be natural
to assumehatthe hypothesisve wish to testis the “null” hypothesisvherewe expect N, eventsin this
massintenal Am andthendeterminghe probability of observingatleastN, events.Assumingthatthe
backgroundateis well knowvn (andsowe canignoreits uncertainty) the p-valuefor this obseration
would be givenby the Poissorprobabilityfor observingat leastN, eventswhenthe meanrateis N, or

n=~N,

exp (—Np) (Np)"
n! '

(9)

However, this probabilitydoesnot take into accounthefactthatwe areconsideringall possiblechoices
of massinternval Am in theregion [m1, ma].

A properestimateof this p-valuewould thenhave to includethe likelihood of observingat least
N, eventsin any possibleintenal Am. This increaseshe p-value of the obseration, andchangeshe
possibleinferencesone can make. For example,a Monte Carlo calculationwhere ém is 1% of the
intenal, N, = 8 eventsand N, = 100 (i.e., the averagenumberof eventsin ary ém intenal is one)
givesap-valuethatis 500timeslargerthantheresultin Eq. 9.

4.1 Blind Analyses

Theprevalenceof thep-valuein makinginferencesestsontheassumptionthatit is possibleto estimate
thefrequeny of all obserationsof theteststatistic,andthatit is possibleto identify the classof obser
vationsthatarelessconsistentvith a givenhypothesigthe critical region in thelanguageof hypothesis
testing). This is inherentlydifficult in casesvhereoneallows the definition of teststatisticandcritical
region to dependon the actualexperimentaloutcomeitself. A tacticto eliminatesuchbiasis the “blind
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analysis, whereonedefinesthe critical region andthe statisticwithout knowledgeof the relevant data
[8].

The ideal experimentis onein which the measuremeréindary calculationof its p-value does
not have to be informed by the dataitself. No choiceswith regardto selectionof data, modifications
in the teststatisticor choiceof critical region would thenbe allowed oncedatacollectionhasstarted.
This approachavoids the possibility of selecting,consciouslyor unconsciouslya critical region or test
statisticthattendto favour or disfavour a given hypothesigased on the data observed.

A numberof celebratedailuresof inferencein particlephysicsoverthelasthalf-centuryillustrate
what happensvhenthe experimenterallows the datato guide his or her choicesin makinginferences
aboutdata[8]. In all thesecasesthequotedp-valuehasbeenassesseihcorrectlybecausé hasfailedto
take into accounthow thefrequeng of a given obseration would be affectedby makingchoicesabout
theteststatisticandcritical region basedon the actualdistribution of the dataitself.

4.2 Useand Limitations of Blind Experiments

The simple exampleof “bump hunting” illustratesthe fundamentaproblemin particle physicswhere
oneis searchindgor evidenceof new phenomenait is inherentlydifficult to identify a priori whatclass
of obserationsonewould expectto usein sucha search.Besideghe difficulty of definingin advance
all possiblemeansof separating'signal” from “background, it is alsodifficult to limit accesgo data
whenonealsohasto verify thattheinstrumentatioris working correctlyandthatary artefactscreatedoy

effectssuchasmiscalibrationanderrorsin bookkeeppingareidentifiedandmitigated. The experiment
designalsohasto allow the experimenteaccesgo the datato measureherateof backgroundeventsin

thesignalsample.

Despitethesechallengesthe elimination of certainbiasesthat are otherwisedifficut to control
make a blind analysisan attractve approachgiven the benefitsof beingableto malke straightforvard
estimateof p-valuesfor the possibleoutcomes.This techniqueis reviewed in anothercontritution to
theseproceeding$8].

5 P-Valuesin a Counting Experiment
5.1 GeneralConsiderations

A commonparticle physicsexperimentinvolvesthe searchfor nev phenomendy observinga unique
classof eventsin particleinteractionghat cannotbe describedy backgrounchypothesesOneusually
canreducethis problemto thatof a “counting experiment, whereoneidentifiesa classof eventsusing
well-definedcriteria, countsup the total numberof obsered events, NV, andestimateshe averagerate
of events,V,, thatcomefrom thevariousbackgroungrocessesOnecanthenperformastraightforvard
estimateof the p-valueof agivenobserationof N, events,assuminghatthe probabilitydensityfor the
randomvariable N, follows a Poissordistribution, i.e. theformulain Eq. 9.

Thereare several issuesthat even this simple problemhasto address.First, one hasto be sure
thatthe criteriausedto selectthe classof eventswasnotin itself biasedoy how N, variedasthecriteria
weremodified.Hereis whereablind analysishasits greatesbenefit,sincethis biasis explicitly guarded
against.Secondpnehasto take into accounpossibleuncertaintiesn theestimateof thebackgroundate
N,. It is beyondthe scopeof this article to discusshisissue ,andtheinterestedeadelis referredto the
growing literatureon this topic [9] (atypical frequentistapproachs to extendthe ensemblef possible
measurement® includethoseexperimentswith differentvaluesof N, consistentvith theknowledgeof
Ny). Third, the carefulexperimenteihasto make surethatall informationrelevantto the searchs used
in themeasurementt is at bestinefficient andat worstmisleadingto ignorerelevantdata(for example,
a possiblechannelin which the numberof obsered eventscan provide additionalinformationon the
processeingstudied).

As a concreteexampleof the calculationof a p-value for a typical countingexperiment,| will
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Final State Obsenation ExpectedBackground Bx Efficieny ExpectedSignal

(events) (events) (events)
CDF
Lepton+ Jets(SVX b-tags) 6 2.34+0.3 0.015 2.4
Lepton+ Jets(Softleptonb-tags) 7 3.1+0.3 0.012 1.9
Dileptons 2 0.6 +0.3 0.008 1.3
DO
Lepton+ Jets(Softleptonb-tags) 2 0.6 £0.2 0.009 1.0
Lepton+ Jets(Topology) 4 1.8+ 0.9 0.026 2.8
Dileptons 1 0.8+ 0.1 0.007 0.7

Table1: The obsered numberof top quark candidatesthe expectedbackgroundate,the overall branchingratio times effi-
cieng for the channel,andthe expectednumberof signaleventsassuminga top quarkwith a massof 160 GeV/c? for each
final state.

summarizehe techniquesisedby the CDF and D0 collaborationgn their searchfor top quarkproduc-
tion.

5.2 The Top Quark Search

Thetop quarkwasdiscoveredby pairproductionin proton-antiprotorcollisionsatanenegy of 1.8 TeV
[10, 11]. Thetop quarkdecayspredominantlyia theprocesg — Wb, with the W bosonsubsequently
decayingeitherleptonicallyvia W — lv; (where"[” canbe eitheranelectron,muonor taulepton)or
hadronicallyvia W — ¢g (the quarkfinal statesareeitherud or ¢3). This resultsin threecateyoriesof
possiblefinal stateswith differenttopologies efficienciesandbackgroundates:

1. thelepton+jetschannelinvolving onehigh enegy lepton,a neutrinoandthreeor morejetsfrom
thehadronicdecayof the W andtheb quarks,

2. the dileptonchannel,involving two high enegy leptons,evidencefor two neutrinos,andtwo or
morejetsfrom the b quarks,and

3. thehadronicchanneljnvolving atleastsix jets.

In both experimentsonehadto useadditionalcriteriato improve the signal-to-noiseatiosin the final
candidateevent samples. For CDF, the mosteffective way to do this wasto requireevidencethat at
leastone of the jets arosefrom a b quarkusingtwo different“b-tagging” techniques.Thus,one could
characterizahe final statesby the numberof b tags,with the eventswith one or two b tagshaving
increasingourity. For DO, themosteffective way to reducebackgroundsvasby imposingmorestringent
kinematiccriteria(atopologicalselectionandusingsoft muonb-tagging.

The searchesiseddatasamplesof increasingsensitvity. The first reporteddatacameafter the
CDF and D0 collaborationshadrecorded19.6 and 15.0 pb~*, respectiely [12, 13]. At thattime, the
experimentshadnot completedanalysisof the hadronicchannelsyhich wereexpectedo be dominated
by background.The resultsof theseanalysesare summarizedn Table 1, wherewe list the numberof
obsered events,the estimatedackgroundates,andthe branchingratio timesefficiengy of observinga
tt decayin eachmode.

Thecollaboration®valuatedhestatisticalsignificanceof their databy usingaMonte Carlocalcu-
lation to estimatehefrequeng thatthe expectedbackgroungprocesses/ould createa combinedsignal
thatwasat leastaslarge asthat obsered. The Monte Carlo calculationcreatedan ensembleof experi-
mentsthatmodelledthe possibleobserationsin all channelsassuminghe Standardviodel background
hypothesis For a given channelthe estimatedbackgroundatewasusedasthe meanof a Poissordis-
tribution of obseredevents.In orderto accountfor uncertaintiesn the backgroundate,the meanvalue
usedto generatea nev memberof the ensemblevasobtainedby samplinga Gaussiardistribution with
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Final State P-Value

CDF
Lepton+ Jets(SVX b-tagging) 0.032
Lepton+ Jets(Softleptontagging) 0.038
Dileptons 0.012
Combined 0.0026
DO
Combined 0.072

Table2: Thep-valuesdeterminedor the obsered eventratesassuminghe StandardModel backgrouncprocesseby the CDF
andD0collaborationsThe DO collaborationonly reporteda p-valuefor the obseration of 7 candidateeventswith anexpected
backgroundf 3.2 + 1.1 events.

the meanandwidth of the estimatedbackgroundate[9]. The resultsof thesep-value calculationsare
summarizedn Table2. The collaborationsconcludedhat the individual obserationsdid not provide
sufficient evidenceto excludethe backgrounchypothesis.

The collaborationsproceededo determinehow likely their set of obserationswere assuming
the backgroundhypothesishy identifying a statisticthat combinedthe obserationsin the individual
channels. In the caseof a countingexperimentinvolving serseral channelsthe maximumlikelihood
estimateof the rateof the processs simply thesumof the eventratesin eachchannel.Thus,thenatural
statisticto evaluatethe combinedsignificanceof the obserationswasthe obsered sumof eventsin all
channelsHowever, the CDF collaboratiomotedthatthemostsensitve measuref thecrosssectionwas
not the total numberof obsered eventsin their sample but the total numberof obsered b-tags(since
therewasa muchlarger probability of observingtwo b-tagsin a signaleventthanin an eventfrom a
backgroundorocess).Thus,CDF choseasits statisticthe sumof the numberof b-tagsin the lepton+jet
eventscombinedand the numberof dileptonevents. Sincethe DO datarelied lesson b-tagging,the
collaborationchoseto usethetotal numberof obsered events.

The calculationof the p-value of the obseration assuminghe backgrounchypothesisvas per
formed by a Monte Carlo procedurethat effectively createda setof “pseudo-&periments. In each
pseudo-gperimentthe numberof b-tagsanddileptoneventsfrom thedifferentbackgroundourcesvas
drawvn from a Poissordistribution thathadasits meanvaluethe estimateackgroundatefor the pro-
cess.Theuncertaintyin thevariousbackgrounccomponentsvastakeninto accountasdescribedhbore,
aswasthe correlationin the differentbackgroundsources.This correlationarosefrom the factthata
numberof backgroundsourcescontrituted both typesof b-tags,whereasthersdid not. In effect, this
increasedhe frequeng of observinga larger numberof b-tags(sincenow the fluctuationsin the two
componentsverecorrelated).

Theresultingp-valuesaresummarizedn Table2. Oneseeghatthesinglemostsignificantp-value
was2.6 x 1073, If onehadnot taken into accountthe correlationsbetweenthe backgroundsources,
the combinedp-value would have been1.6 x 1073, or a factor of almosttwo smaller Alternatively,
the combinedp-value determinedoy just countingeventswould have beenapproximatelyl0—2. This
demonstratethe sensitvity of a p-value calculationto the approximationsisedto determineit. Given
all thisinformation, both experimentsconcludedthatthe obserationswerenot sufiiciently compelling
statisticallyto excludethe backgrounchypothesis.

5.3 SignificanceRequiredfor Discovery

In the searchfor the top quark,the CDF and D0 collaborationsarguedthat obserationswith p-values
of order10~3 were not sufiiciently significantto be usedto claim discovery of a nev phenomenon.
Althoughthis is clearly a matterof opinion, it is roughly consistentvith the practicein thefield, where
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typicallythe“50” standards usedasroughrule of thumbto definethesensitvity necessarfor discorery.
This correspondso a p-valueequialentto betweerb.7 x 10~7 and2.8 x 10~7, dependingn whether
you aresearchingor a deviation from ameanor a one-sidedluctuationfrom themean.

As aconcreteaxample thetwo Tevatroncollaborationsisedanidenticalanalysigoroceduravhen
approximatelya factorof two moredatahadbeenrecordecby bothexperiments Theresultingp-values
of the CDF and D0 obserations assumingthe backgrounchypothesisvere1 x 1076 and2 x 1076,
respectiely [10, 11]. Both experimentsconcludedthat the backgrounchypothesiscould be excluded
andclaimedobsenation of top quarkpair production.

6 P-Valuesfor Continuous TestStatistics

High-enegy physicsmeasurementsften examinestatisticalvariablesthatare continuousn nature.In
fact, to identify a sampleof eventsenrichedin the signalprocesspne oftenimposesselectionrequire-
mentson suchcontinuousvariables.Often, it is importantto take into accountthe entiredistribution of
agivenvariablefor asetof events,andnotjustwhetherthe eventslie in agivenrangeof values.

Thegeneraproblemcanbeposedn thefollowing way. Supposeve have asetof eventdataeach
characterizedby a setof statisticsX;, where; = 1 to N. In addition,onehasa hypothesido testthat
predictsthe distribution of X, sayf()_('; @), wherewe assumethis function to be normalizedto unity
betweenX,,;, and X,,.., the minimum andmaximumvaluesof X, andd is a setof parametershat
are eitherknown or estimateddirectly from the data. Thenthe generalproblemis to definea statistic
that gives a measureof the consisteng of the distribution of datawith the distribution given by the
hypothesis.

6.1 PossibleTools

Themostwidely usedsuchstatisticin the 1-dimensionataseis a form of a“runstest; whichcompares
the predictedcumulatie distribution

X

90 = [ () ax’ (10)
Xmin

with the obsered cumulatve distribution ~(X). The mostcommontestis the Kolomogore-Smirnos

(K-S) test[14], which makesthis comparisorby first finding the K-S distance

0 = max {|g(X) — h(X)|, X € (Xmin, Xmaz)}» (11)

namelythe largestdifferencebetweenthe two cumulative distributions. This teststatistichasa char
acteristicdistribution that can be calculatedanalyticallyto provide onewith a p-value, specificallythe
probability that one would obsenre a value of this teststatisticaslarge asor larger thanthe obsered
value.

The K-S testgivesa distribution-freemeasureof the consisteng of a 1-dimensionakontinuous
variableandis oftenusedn theparticlephysicditerature.Althoughthereareanumberof otherteststhat
couldbeusedin this caseall with similar propertied15], the K-S testhasbecomeareferencestandard
to employ.

6.2 Extensionto Higher Dimensions

The K-S test(andotherrunstests)arein principle limited to 1-dimensionabistributions, but thereare
extensiongo thecaseof severaldimensionsthoughwith anumberof restrictions.Theextensiorrequires
oneto assumehatthe probability distribution predictedoy the hypothesisanbefactorized sothat

F(X) = f1(X1) fo(X2) -+ fu(Xn), (12)
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wheren is the numberof continuousvariablesbeing compared. This in effect requireseachof the
variablesto be uncorrelateda strongassumptiorand onethat hasto be verified in practice. With this
assumptionhowever, onecanthendefinea setof independenstatisticsd;, : = 1 to n, andtheassociated
p-value for eachobsened K-S statisticp;. Then one cancombinetheseindependenp-valuesinto a
singlemeasuref significance.

6.3 Example: CDF “Superjets”

A concreteexampleof this techniquds arecentanalysisof hadroncollider dataperformedby the CDF
collaboration.A studywasperformedof eventsthatwereconsistentvith the productionof oneor more
hadronicjetsanda W bosondecayingto a lepton-neutringair. The collaborationdefineda subsample
of theseeventswhereat leastonejet wasidentifiedasa “superjet”’, namelya b-quarkcandidatget with
boththepresencef asecondaryertex in thejet displacedrom theinteractionvertex andthe presencef
asecondeptonassociatedvith thejet consistenwith comingfrom thesemileptoniaecayof ab hadron
[16].

The collaborationfound 13 sucheventsin the 1992-96Tevatron Collider data,wherethey esti-
matedthatthey would have expectedd.4 + 0.6 eventsfrom StandardViodel backgroundsources.This
obsenration hasa p-valueof 0.001,treatingit asa countingexperimentandusingthe techniquesntro-
ducedabore. Theauthorsthenproceededo examinenine separat&inematicvariablesthathaddistri-
butionsthatwere predictedto be largely uncorrelatedbut that might distinguishbetweenthe Standard
Model backgroundsinda variety of exotic sourcesof events. A typical exampleof sucha comparison
is givenin Figure 2, wherethe obsered distribution of the leptonpseudorapiditf{n = — Intan(6/2),
where@ is the angle of the leptonrelative to the incoming proton beamaxis) is comparedwith the
predictedn distribution? The plots on the right-handside are the distributions of the K-S distanceas
determinedrom a Monte Carlocalculation.

The p-valuesfrom eachof the distributionswere determinedandrangefrom 0.001to 0.15. The
authorscommentthat “given the a posteriori selectionof the 9 kinematicalvariables,the combined
statisticalsignificancecannotbe unequvocally quantified. However, we candeterminea combinedp-
valueby calculatingthe productof the 9 p-values p;,:, anddetermininghow likely it would beto obtain
this productvalueassuminghebackgrounchypothesisThis s givenby

9 m—1 n k
P =TI [Z %] (13

m=1 Lk=0

andequalsl.6 x 10~% assuming/ou setasidethe reserationsof theauthors.

This estimateof the overall p-value raisesa numberof comments. First, are the variablessuf-
ficiently uncorrelatedhat ary residualcorrelationscan be ignored? Varioustestswere madeof this
assumptiorby the authors but no rigorousargumentwas presented Second uncertaintiesn the Stan-
dardModel predictionshave not beenincorporatednto the p-value calculation. Thesemay have some
effect on the overall result, but it is unclearhow large this might be. Third, the effect on the p-value
estimateof the a posteriori choiceof variablesis virtually impossibleto assessA studyof a seriesof
alternatevariablesweremadeby the authorsjout no firm conclusioncouldbe drawn.

Of these perhapghethird is the mostvexing. It is true thatthe choiceof the 9 variablesfor this
analysiswasmadeafterthe 13 eventdatasamplehadbeenidentifiedasbeingunusual.ln thatsenseijt
is no longerpossibleto aguethatthe quotedp-valueis anunbiasedneasuref the significanceof the
obsenration.

2Theauthorschosebackgroundiistributionsfor thesefiguresobtainedusingMonteCarlocalculationsbut usedbackground
distributionsfor their p-valuecalculationsobtainedby “bootstrappind, usinga complementarylatasamplethathadno signal
eventsandthat was arguedto provide a good characterizatiorof the expectedStandardModel backgrounds.The Standard
Model Monte Carlocalculationgesultedn similar p-valueestimates.
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Fig. 2: Then distribution of the leptonfrom the W bosondecayin the CDF “superjet” eventsis shavn in the top-left plot

(points) and comparedwith the StandardModel prediction (shadedhistogram). The top-right distribution is the expected
distribution of K-S distanceof the 13 dataeventsandthe SM predictionin thetop-leftplot. Theverticalline is the K-S distance
for thetwo distributions. Similarly, the bottom-leftplot is theleptonn distributionfor the complementargampleof dataevents
wherea “superjet”is not detectedandthe bottom-rightplot givesthe distribution of the correspondindl-S distancebetween
thedataandpredicteddistribution. The K-S testdistributionsweregeneratedisinga Monte Carlo calculation.
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In this case,the beststrat@y is to repeatthe measuremenwith an independentatasampleto
determindf the sameeffectis obsered. However, this analysissenesasa goodexampleof theissues
onemustfacein makingsucha multi-variateestimateof significance.

7 Observations on Curr ent Practice and Summary

Particle physicistshave increasinglyrelied on numericalestimate®f statisticalsignificance.Thelitera-
tureis repletewith theuseof the p-value,andthis appearso have developedinto onecommonmeasure,
asillustratedby the examplesprovided above. Othermeasure®f significanceareoftenquoted,suchas
theequivalentnumberof standardleviationsa measuremernies from the valuepredictedby a hypothe-
sis. Thisis, of coursejustap-valueunderadifferentname.

More significantly thereare consistentattemptsin the literatureto includein p-value estimates
more completeinformationabouta given measuremensuchasthe sensitvity of the estimateto sys-
tematicuncertaintiesand information from several statistics. The more difficult problemof avoiding
unconscioudiasin the selectionof statisticsis addressedhroughthe useof “blind analyses, but the
effective applicationof suchtechniquego truly serendipitousliscoveriesis problematic.Here,thetime-
honouredechniqueof testingspecifichypothesedevelopedthroughthe studyof onedatasetby creating
andanalyzinganindependentiatasetwith atleastcomparablestatisticalpover remainghe mosteffec-
tive tool for separatingvhatwe would call the “statisticalfluctations”from first evidencefor truly new
phenomena.

Finally, whatis anappropriatecriteriafor claiming a discovery on the basisof the p-valueof the
null hypothesis?The recentliteraturewould suggest p-valuein the rangeof 10~¢, comparableo a
“5¢” obseration, providescorvincing evidence. However, the credibility of sucha claim relieson the
caretakento avoid unconscioudiasin the selectionof the dataandthe techniqueshoserto calculate
thep-value.
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