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Abstract
If aprior probabilitydoesnotexist or is controversial,canweformulateproba-
bilistic inferencebasedonly onthepropertiesof themeasurement?In thecase
of plain ‘location’ measurementstheanswerto this is known. Herewe extend
that answerto addressthe generalproblemof estimatinga scalarparameter
from a small datasample. That measurementis treatedas if resultingfrom
perturbationsof a locationmeasurement.A proof is provided, that alwaysa
“posterior” without a prior existsandis equalto theposteriorbasedon “Jef-
freys’ prior”. The latterdensityis utilisedin this way only, without assuming
that it is therealprior, becauseJeffreys’ prior maybeupdatedwhenwe com-
binemeasurements,or whenwe revisethestoppingrule. Prior-free inference
is meaningfulonly if no prior exists or if it is provisionally suppressed.We
discussin whatkind of problemsthismethodis applicable.

1 INTR ODUCTION

Where there is a prior probability [. . . ] you don’t have to be a Bayesian [to apply it]: that’s because the idea of
using a prior probability makes sense because there is a prior probability. The problem is, do you want to put in a
prior probability for something like the mass of the Higgs where there is no prior probability? FredJames,[1].

A review of relatedliteratureis in [2]. For anexampleof obtaininga posterior-like ����� without
a prior, considera measurementof theangulardistanceof two starsin thesky, pickedat random:if we
know theprecisionof themeasurement,thenthis is alsoouruncertaintyabouttheangle.This is acoarse
statementof an experimentalscientist’s intuitive interpretationof a plain ‘location’ measurement,as
long asno prior beliefsaresustainedaboutthelocationparameter. Relatedto this interpretation,certain
statisticalfoundationshave beendiscussed(fiducial, structural,pivotal)1 but usuallyin suchtermsthat
correspondenceto a physicist’s intuition is not clear. Herewe shallapplyonly Bayesiannotions;not by
forcingaprior onevery analysis,but by consideringtheimplicationsof lackingaprior.

It mayhappen,asacoincidence,thattheprior-free“posterior” is numericallyequalto theposterior
thatwouldbeobtainedif acertainprior wereassumed.This is truein thecaseof locationmeasurements
(reviewedin thenext section),for which theprior with thematchingposterioris uniform in thelocation
parameter. It would be convenientif for any problemthe prior-free posteriorcould be calculatedby
multiplying the likelihood by some“prior with matchingposterior”. That is, we would like to prove
that (a) the prior-free posteriorexists always,and(b) it is equalto the productof the likelihoodby a
certaindensity, ‘the prior with the matchingposterior’. Theseconjecturesarenontrivial, becausewe
cannotinvoke Bayes’Theoremdirectly: that theorempresupposesbelieving a certainprior probability,
notmerelybelieving thatit is amathematicalobjectwhich leadsto pragmaticallyadequateinference.2

Theaim of this article is to justify theconjecturesandfind theformulafor thegeneralcase.The
mainideais to considerthegenericproblemof interestasif it weretheresultof succesive perturbations,
startingwith somelocationmeasurement.A simpleexampleis themeasurementof theangulardistance
of two starsin the presenceof faint clouds. Even a countingexperimentcan be so linked to some

1About those,see[3] andcitedreferences,esp.Barnard,Fisher, andFraser.
2Thephrase‘uninformative prior’ is anoxymoron[5] if it is adopteduncritically.

157



locationmeasurement,imaginingthat,by meansof a sequenceof perturbations,continuousprobability
is graduallydeformedto approachasumof weighteddeltafunctions.

We shallalsodiscussin brief thequestionin whatcircumstancesprior-freeposteriorsapply. The
problemof vectorparameterestimationis notaddressedin thiswork, to postponedealingwith questions
relatedto hierarchicgroupingof parameters[2].

2 THE RELEVANCE OF JEFFREYS’ PRIOR FOR SMALL DATA SAMPLES

2.1 Surveyof known results

Definition. If a measurementprovidesa singledatum � for estimatinga scalarparameter� , the term
‘locationparameter’meansthat,in this parametrization,themeasurementerror �	�
���� is anadditive
noiseof known �����������	� ��� ����� ��� ��� (where‘ � ’ standsfor the evidencethat establishes��� ��� ). � is
regardedascausallyunrelatedto anything elsein thismodel.

Whenwe run themeasurement,or a simulation,for calibrationpurposes,� is known; in anactual
measurementit is consideredfixedbut unknown, correspondingto a Bayesianrandomvariable  . If �
is assumedfixed,thepossiblevaluesof � correspondto a randomvariable! of probabilitydensity�"�$#%� ��� �'&(���"� ���(�)� ������ �'&(���*� ��� �+����-, (1)

(Densitiesarerepresentedby functionsin thestatedparametrization.)

After an actualmeasurement,if along with the datum � we also possesssomeinformation .
leadingto aprior / � ���0� ���(12� ��� .3� , Bayes’Theoremwill leadto theposterior���4� for  : ���-12� ��� �5&�.6&(���7 / � ��� ��� �8�9�:� . Notethattherelated����� for theerror � will be �"�(�)� �:� �5&�.6&(�;�*� �"�<1=� �8�+�:� �5&�.6&(��� 7/ � �>�+��� ��� ��� . Thelatter ����� canbeviewedeitherastheresultof changeof variableor astheposteriorof
analternateBayesianestimation:to aninstrumentmaker, thequantityof interestis � . Hehasestablished
prior beliefs �"�(�)� ��� ���2� ��� �?� aboutit andis readyto updatethosebeliefs,whenheobtainsthedatum� andtheprior / � ��� for  . Yet if no prior is availablefor � , theinstrumentmaker will remainwith his
prior for theerror, becausethereis no intermediatestepin Bayesianinference.Takingthedatum � into
account,his prior beliefsabouttheerrorareturnedinto beliefsaboutthemeasuredparameter, by means
of changingvariableto  @�A!B�� :�"�-12� ��� �C&(�;��� �"���	� ������ �5&(���"� ��� �9����-, (2)

In plain words,if theprecisionof a measurementis known, theuncertaintyof theoutcomeis its mirror
image,aslong asno prior for  hasyet beentakeninto consideration.3 This is a provisional result(not
a marginal ���4� ) whetherin a Bayesianor in a frequentistapproach,assuming a location measurement.
If aprior / � ��� is admitted,this ���4� is supersededby theposterior.

This resultis equalto thefiducial ����� in this case.It alsoagreeswith theposteriorthatwould be
obtainedif oneassumeda prior uniform in thelocationparameter(we have not doneso). In this article
the latterdensitywill becalledthe false prior of theproblem,to emphasisethat (like a falseceiling or
falseteeth)it hasa functionbut is not therealthing.

In any specificproblem,existenceof a falseprior simply meansthat we canachieve prior-free
probabilistic inferenceby meansof multiplying the likelihood by the falseprior (as it happens;not
becauseBayes’Theoremapplies).Non-existenceof a falseprior would imply eitherthatno prior-free
“posterior” (e. g. like thatof Eq. 2) exists,or a situationin which theratio of that ���4� to the likelihood
woulddependnotonly on � but alsoon thedata.

“V irtually all default Bayesianmethodsrecommendthis conditionalprior, asdo various“struc-
tural” andevenfrequentistapproaches”([4], Sec.4.3 in thepreprint,referringto a moregeneralcase.)

3Thesamechangeof variablethatis usedto derive Eq.2 hasalsobeennotedto relatethetwo prosteriorsmentionedabove.
An equivalentchangeof variablehasbeenusedto derive Eq.1, which is themirror imageof Eq. 2. This featureis masked if
thedefinitionof locationmeasurementis merelya formal assumptionof thetwo endsof Eq.1, asis usual.
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Therefore,in thecaseof a locationmeasurementat least,it is legitimatefor a physicistto follow plain
intuition andconsidertheoptionof no prior. Of coursewe mustexaminewhenthis option is appropri-
ate;conversely, in whatcircumstances‘educatedguessing’canbejustified. Thesequestionsareleft for
a latersection.Hereweshallconcentrateongeneralisingthemethodbeyondthecaseof aplain location
measurement.

Ratherthana singlerealnumber� , thedatamaybeanarray D of E realnumbers.Providedthat
therelatederrorarrayis regardedasindependentadditivenoiseof known E -dimensionaldistribution, the
sameargumentsapply. That is, prior-free probabilisticinferencecanbeobtained,andthe relatedfalse
prior is againuniform in � .

A specialcaseof arraylocationmeasurementis obtainedfrom thecombinationof a setof mea-
surementsof the samelocation parameter. Becausea falseprior is not a real prior, we cannot(yet)
concludefrom the existenceof a falseprior for a single locationmeasurementthat the same(or any)
falseprior wouldapplyto acombinationof suchmeasurements.But thisconclusionis obtaineddirectly,
becausea combinationof locationmeasurementsis aspecialcaseof anarraylocationmeasurement.

Theunisonof differentstatisticalfoundationsin thecaseof locationmeasurementsdoesnotextend
to the generalproblem. Only with asymptoticapproximations,assuminggreataccumulationof data,
we find an agreementagain. This is due to the existenceof a reparametrizationof � , for which the
condition of location measurementis asymptoticallysatisfiedin somesense,as several authorshave
observed(thoughnot alwaysin clearterms,asnotedin [2]).4 Jeffreys’ prior is definedasa densitythat
is uniform in thatparametrization.5 In theoriginal parametrization,it is (using ����� DF� ��� asshorthandfor�"��GH� DF� �'& model� )
/�I � ��� 7KJMLN�PO �RQTS �"��� DF� ���$UVS��VWYX5U ����� DF� ���[ZP\<] ^_� J � L`�aO � �"�b� DF� ���=cdS Xfedg �h����� DF� ���$�$UVS�� X<i Zj\<] ^*,

(3)
The samedensityhasalsobeendefendedin termsof its utility, usingdecision-theoretical arguments
with asymptoticassumptions[2]. It hassomeremarkableproperties. It is invariant underreparame-
trizationsof � . Also, if we considera combinationof two measurements,Jeffreys’ prior is updated,
usingthe combined����� DF� ��� . Note that a real prior would not be updatable;the probability would be
updatedbut theprior would remainfixed,unlesstheprior informationwererevised.Yet if we combine
two measurementsof thesamekind (that is, with identicalstatisticalmodels �"�b� DF� �:� ) theupdatingof
Jeffreys’ prior leavesit unchanged.6

Jeffreys’ prior is meantfor the asymptoticcase,but in the restof this work we shall extendthe
rangeof its application.As astartingpoint,notethatfor locationmeasurementsthefalseprior coincides
with Jeffreys’ prior.

4Hereis a condensedaccount.As dataaccumulatewe expectthat thesampledistribution almostcertainlyapproachesthe
theoreticalk'l�mon�p q<r , thereforewethink of thedatasampleasa lumpthatcanberepresentedby meansof asinglenumber, if we
disregardtheasymptoticallynegligible statisticalnoise.Thatnumbermaybethemaximum-likelihoodestimategeneratedby
thatsample.For any fixed q�s , thedistribution of them-l estimateapproachestheGaussianshape,with varianceapproaching
zeroasymptotically. In generalthat variancealsodependson q�s , but if we usean appropriatereparametrization(‘variance-
stabilizing’) of t thevarianceof them-l estimatecanbecomeindependentof theassumedtruevalue,regardlessof thesample
size,provided that it is large enough.Becauseof asymptoticuniformity in the shapeof the distribution of the m-l estimate
aboutany tentative value q , we have approximatelyformalequivalencewith thedefinitionof a locationparameter.

5Oneway of deriving theform of a variance-stabilizingparametrization:considergroupingtheaccumulateddatainto bins
of n , for which theGaussianapproximationis applied,andfind a conditionrequiredfor theconstancy thesecondderivative of
thelog-likelihood.

6To seewhy this is so,notethat theasymptoticcase,which consistsof a largenumberof repetitionsof thesamemeasure-
ment,canalsobethoughtof asrepeatingpairs of thesamemeasurement– or triads,andsoon.

159



2.2 Prior -fr eeinferencein the generalcase

We have seencases(combinationsof location measurements,and the asymptoticcase)in which the
resultcanbe obtainedby multiplying the likelihoodby a falseprior, but we have not yet proved that
this methodis applicablealsoin the generalcase.As statedin the Introduction,to studythe general,
small-samplecaseweshallregardany measurementastheproductof asequenceof smallperturbations,
startingeitherwith somelocationmeasurementor with a finite combinationof locationmeasurements
(dependingonwhetherourmeasurementprovidesasingledatumor anarrayof data).

In thissectionweshallconsideraproofthat,in thelimit of infinitely many successive infinitesimal
perturbations,theproperty“prior-freeinferencebeingequivalentto usingJeffreys’ prior” is preservedto
thefirst orderin thesumof thestrengthof perturbations.But in this limit all higher-ordereffectsvanish;
thefirst-ordertheoremis all weneedto prove.

Herewedo not scrutinisetheassumptionthatany problemof interestcanbederivedby meansof
perturbationsstartingwith locationmeasurements;let us just supposeso. We alsoneedto assumethat
the existence of a prior-free result is not canceledby a perturbation.For a physicistthis assumptionis
self-evident: it would bebizarreif prior-free inferencecouldbeextractedfrom somemeasurementbut
wereprecludedfor aninfinitesimallyperturbedmeasurement.

Statisticalanalysisof all kinds is basedon the following assumption.If two measurementsare
describedby equivalentstatisticalmodels,i.e.�Yuv� D�&����$� �"�-G"w�� DF�x 8y3�z�'&({}|�~'� e:� ��� �"��G��=� DF�x ����z�'&({}|�~'� e:� �-& (4)

andwepresumeequivalentprior information(or noprior, asfarasweareconcerned)thenthesamedata
leadsto thesameinferencein eithercase.For studyingperturbations,we needto adaptthis assumption
for casesin which the equality is not exact but approximate,whetherto a certainorder in a power
expansion,or in a probabilisticsense.We shall regardModel � asa variationof Model � , andwill be
concernedwith determiningthecorrespondingvariationof theprior-freeposterior.

Proof. If we supposedthe existenceof a transformation(that is, reparametrization)of the data
spacealongwith a transformationof theparameterspace,suchthat thetransformedModel � beequiv-
alentto theunalteredModel � , thentheprior-free posteriorfor Model � would bedefinedin thenew
parametrizationjust by copying the correspondingdensityof Model � . Yet in generalsuchan exact
matchingdoesnotexist.

We candefine“approximatelymatching” transformationsif we take into accountthe prior-free
posteriorin Model � ,7 ���-12� ��� D�&({�|:~'� e:� � anduseit to determineaveragedifferenceof the two sides
in Eq. 4, aswell asthevarianceof thedistribution of thatdifference:for “approximatematching”,the
averageis requiredto bezeroandthevariancenot far from theminimal possible,that is, within a fixed
fractionaltolerance,say �V�a� . This definitiondependson thedegreeof tolerance(but this will beseen
to beof no consequence).Note that,even if a bestmatchingweredefineduniquelyby therequirement
of minimalvariance,any othertransformationthatresultsto avariancewithin �b� from theminimalone
wouldpresentnearlyequalclaim to approximatelymatchingModel � .

With any aproximatematching,if we copy the prior-free posterior �"�-12� ��� D�&({�|�~'� e�� � into a
densityof theparameterof thetransformedModel � , asif thetwo modelswerematchedexactlyby way
of this transformation,we will obtainthe prior-free posteriornot of Model � but of a mutatedmodel.
(This observation will be usefulwhenwe considervarying models,so that, in the limit, the minimal
varianceapproacheszero.)

Now let us think of Model � as the result of a perturbationof Model � , of strength � . The
perturbedmodelcanbeexpressedas � ����G�� DF�x N�@�:��� \ �"��GH� DF�x N�@���f���a� � D������5��� � � X � , where� is
theperturbationstrength,and � is somedensitywith regardto D andalsoa functionof � . In thissection,
thesign“ � ” denotesanexpansionto thefirst order.

7In studyingperturbations,onemakesuseof anapproximateresultin orderto calculatethenext correction.
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Wetake advantageof tranformationsof dataarray D andof parameter� , to vary theform of� �"� ]x]x] � DF� ��� , trying to matchtheunperturbedform \ �"� ]x]x] � DF� ��� . Any transformationfrom � D�&���� to ��� &-�0�
satisfiesrelationslike � ��D9����� � DC� and ���z�)��� ��� ��� , for somescalarfunction � andarrayfunction� , whichareatourdisposalto define,providedthattheresultingtransformationsareone-to-one.

Whenthedataarrayis transformed,probabilitydensityis multipliedby theJacobiandeterminant,�
. On thebasisof theexpansion� �����- 3���¡�F�R��¢ ���  £���A� � � X � , we obtain

� �N�j�¤�¦¥§S���¨[UVS©�©¨ .
Thetransformedprobabilitydensityis � ����ª%��� �x«
�`�0�3� � � ����G¬��� ��4� � DC���x N�`�+��� ��� �0�$�� \ �"�(G���� �x �`�0�®�
�FQ � � D��-�0�2� \ �"�(G���� �x ¡�¡���®¥ S���¨ ��� �$UVS©¯j¨*�A¥ S \ �"�(G���� �x °�N�0�$UVS©¯j¨0�±¨ ��� ��RS \ ���(G���� �x °�z���$UVS0� ��� �0�[W .
Accordingto theearlierdefinition,thepair of transformationsspecifiedby � and � constitutean

“approximatematching”to thefirst orderiff thesumin squarebracketsis of zeroaverageandof nearly
(within somefixedfractionaltolerance)minimal variance,with regardto theprior-free posteriorof the
modelwith ���8� . With any suchpair of � and � , let uscopy theprior-free posteriorof theunperturbed
modelinto a densityof � , asif the matchingwereexact; the resultcanbe thoughtof astheprior-free
posteriorof a mutatedmodel,which is definedby droppingthe � termin the lastequationabove. Here
we have assumedthattheassumptionexpressedin Eq.4 alsoholdsasafirst-orderexpansion.

If we happento know thatJeffreys’ prior providesprior-free inferencefor ���8� , this mustalsobe
trueto thefirst orderin � for mutatedmodels.NotethatJeffreys’ prior is invariantundertransformations
of theparameterspaceaswell asof thedataspace.

Thedifferenceof any mutatedmodelfrom thenon-mutatedone(thelatteris theresultof perturba-
tion with strength� ) is zeroin thezero-orderexpansion,zero-in-the-averagein thefirst-orderexpansion
in � , andwith varianceof thesecondorder. In generalfor each� thereis aninfinite numberof suchmu-
tatedmodels,eachcorrespondingto anapproximatelymatchingtransformation;notethatthedifference
betweenany two suchmodelshasthesameexpansionpropertiesasthedifferencefrom thenon-mutated
model.

We return to studyingthe sequenceof perturbationswhich leadsfrom a location model to the
realmodel. This correspondencebecomesexact in anappropriatelimit, asthenumberof perturbations
increaseswithout boundwhile the strengthof eachperturbationgoesto zero. Considerthe mutated
modelsthat arisein the first perturbation;eachof thosemutatedmodelsleadsto a family of mutated
modelsin thesecondperturbation,andsoon.

In thefinal perturbation,anextendedfamily of mutatedmodelsis assembled;thedifferenceof any
two suchmodelsis zeroin thezero-order, zero-in-the-averagein thefirst orderof thesumof perturbation
strengths,andof variancethat vanishesin the limit, becauseit is � � � X � . All higher-ordertermsvanish
identicallyin this limit. Thesamecanbesaidfor thedifferencebetweenany mutatedmodelandthenon-
mutatedmodel. Therefore,in the limit, the whole final extendedfamily of mutatedmodelsshrinksto
approximatethenon-mutatedmodel.Thisresultdoesnotdependonthetolerancewesetin thedefinition
of approximatematching:with wider tolerancewe would get larger families,but thelimit would bethe
same.

Accordingto theabove considerations,for eachmutatedmodel,theprior-freeposterioris already
defined,to thefirst orderin thesumof perturbationstrengths.But higher-ordertermsvanishin thelimit,
thereforethedefinitionbecomesexactin thatlimit. Becauseof theshrinkingof thefinal extendedfamily
of mutatedmodelsin thelimit, this is thedefinitionof theprior-freeposteriorfor therealmodel.

As notedin the previous section,the falseprior of any locationmodelcoincideswith Jeffreys’
prior. Accordingto theaboveproofthesameholdsfor eachgenerationof mutatedmodelsin thesequence
of perturbations(that is, to thefirst orderwith vanishinghigher-ordereffect) thereforeit alsoholdsfor
therealmodel.
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2.3 Application to problemsin high-energy physics

In HEP, wheredatasamplesareoftensmallor empty, suchconsiderationsarerelevant. In thecaseof a
countingexperimentof a pre-setduration,Jeffreys’ prior for thePoissorrate ² is 7 ²®³ \<] ^ . If a search
hasreturnedanemptysample,anupperlimit basedonthisprior is abouthalf of thecorrespondingupper
limit that is basedon a prior uniform in ² . If thesamplesizeis E , theBayesianaveragefor ² is E+����,µ´
ratherthan E¬�¤� . More importantthanimplementingtheseadjustments,wetacklethe‘anxiety’ whether
usingaprior makessenseatall.

3 WHEN DO WE NEED PRIOR-FREE INFERENCE

Hereis anexample.In ageodesicsurvey involving threemountainpeaks,weareinterestedin thesum, � ,
of theanglesof thattriangle.Besidesthesignificanceof themeasurementfor testingspace-timetheories,
supposethatwearealsointerestedin estimating� , evenif only for thesake of quotinga result.

Every gravitational theoryof space-timeprovidesa model. If someonebelieves that Euclidean
geometryis necessarilytrue, thenhis prior is a delta function, ¶ � �9�A/5� . Strictly speaking,he cannot
evendefinelikelihoodfor ��·�8/ becausesuchadefinitionwouldbebasedon acontradiction.

In the approachbasedon Einstein’s GeneralRelativity, � is expressedin termsof relatedmag-
nitudes ¸�¨ (e.g. the massof the Earth)andphysicalconstants¹®º . The pre-datainformationon these
parametersis expressedas a joint probability density / ��» ¸ ¨4¼ & » ¹ ºj¼ � , from which we can calculate
the pre-dataprobability densityof � . The measurementupdatesthe former probability, thereforealso
updates,indirectly, the ���4� regarding � . If the measurementis not preciseenough,the resultwill be
dominatedby pre-datainformation. Note that, in theexact treatment,� is not a parameterof themain
calculations:we do not definelikelihoodof � usingprobability ����#%� ��� �'& model� . Thesameconsidera-
tionsapplyto any otherspace-timegravitational theory.8

If we cannotevendefinea model-independentlikelihood ���$#%� ��� �'&;½?� for all implicatedmodels,
thereis no way to achieve universallyvalid estimationof � , evenif we hadagreedon somecompromise
for prior. (At mostwe canperforma significancetest for eachmodelseparately.) However, from the
experimentalists’point of view thereis an empirically derived probability �"��#¾� �®� �'& apparatus� , based
on calibrationsandtrials of the threeanglemeasuringdevicesinsidea small laboratory– providedthat
we disregardthephysicalmeaning,in eachtheory, of theparametermeasuredby meansof thesurvey.

Fromthepointof view of eachtheory, theaboveprobabilityis only anapproximation.Its validity
is explainedby the applicability of Euclideangeometryin the small rangeof the laboratory, because
the spacecurvaturededucedfrom the approximatelyknown ¸ ¨ and ¹ º is not too large. Yet, if the
experimentalist’s formulais consideredfor valuesof � quiteremovedfrom / , spacecurvaturewould be
largeenoughto have aneffect evenin lab calibrationruns,accordingto thetheory.

From the experimentalist’s point of view this concern(if he is awareof it) is purely theoretical
becausethereis ampleempiricalevidencethatEuclideangeometryis in agreementwith measurements
insidethelaboratory. After all, if thesurvey returnedsuchavaluefor � , themodelwouldbediscredited,
for failing to explain theapplicabilityof Euclideangeometryinsidethelab.

Now theproblemcanbe formulatedsimply asestimatingtheexperimentalist’s � from datum � .
Note that theagreedform of �"�$#v� �®� �'& apparatus� presupposesdisregardingthephysicalmeaningof � .
Accordingly, thereis no prior for theexperimentalist’s � . (Supposefor examplethata generalrelativist
adoptedhis pre-data���4� for � asa prior; asidefrom the logical inconsistency of mixing theempirical
likelihood with a theoreticalprior, note that this would be an inaccuratetreatment,becauseit would
ignorecorrelationsin / ��» ¸ ¨4¼ & » ¹ ºj¼ � .) In otherwords,theprior-freeoptionis theonly wayto formulate

8It is possibleto inventadditionalparametersandcontrive somegeneralmodelthatencompassesasspecialcasesGeneral
Relativity andEuclideangeometry. Unlessthis generalmodelis basedon someplausibleguidingprinciple, thedefinitionof
likelihoodin theintermediatecaseswill bedeemedarbitrary. Thatis, anartificial generaltheorycannotsubsumetheparticular
theoriesin this discussion.
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parameterestimationthatdoesnotdependon theassumptionsof aparticularmodel.

This is not to saythat thereis no placefor any privateor tentative assumption.A professional
practitionermay apply educatedguessingin makingqualifieddecisions,diagnoses,and forecasts.A
civil engineerusuallyassumeswithout testingthat Euclideangeometryis an adequateapproximation.
For anotherexample,considera physicianwho wantsto interprettheresultsof theHIV testof a patient
who hasbeenclassifiedasa regular morphineuser. Becausethe reliability of the result is limited, the
physicianwantsto take into accountthe rateof HIV infection in thatgroup,but hedoesnot know that
rate. Yet he knows the rateof infection amongheroinusers,andhe believes that the mechanismthat
accountsfor the high ratesof infection in that groupalsoappliesin the caseof morphineusers. He
calculateshis posteriorprobability of HIV infection for this patientusingthe assumptionthat the two
groupratesareapproximatelyequal.

But when we estimatea parameterwe must revert to assumptionsthat are not disputedin the
context of this measurement.9 In the context of the last example,after we samplea groupof people
to estimatethe grouprateof HIV infection,whenwe analysethe resultwe mayneedto disregardour
prior beliefsaboutthe mechanismof infection, if they arenot preciseenough,or not sharedby every
practitioner.

4 CONCLUSIONS

In thecaseof plainlocationmeasurements,intuitive formationof prior-freeprobabilisticinferenceis jus-
tified from a Bayesianpoint of view, aslong asno prior is admitted.Applying successive perturbations,
we canextendthenotionof prior-freeresultto thegeneralcaseof scalarparameterestimation.

Thecalculationof any prior-freeresultcanbeobtainedby multiplying thelikelihoodby Jeffreys’
prior. The latter is not therealprior of theproblem,only a calculationaltool. That is, we do not apply
Bayes’Theorem;we only take advantageof a shortcut.Whenwe combinetwo differentmeasurements
we mustrevisetheprior, to beJeffreys’ prior of thecombinedstatisticalmodel.Thestoppingcondition
of thesamplingaffectsJeffreys’ prior, in contrastto any casein whicha realprior is applied.

Qualifiedconjectures,even if suitablefor professionaldecisionmaking,may be questionablein
thecontext of parameterestimation.For suchcases,andwhenthereis no prior available,theno-prior
optionis needed.Thisapproachrequiresthat ����#%� ��� �'& apparatus� canbederivedwithin someadequate
approximation(that is, in comparisonto the minimal standarddeviation) on the basisof presumably
undisputedinformationandassumptions,like calibrationdata.
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