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Abstract

If aprior probabilitydoesnotexist or is controversial,canwe formulateproba-
bilistic inferencebasednly onthepropertiesof themeasurementt thecase
of plain ‘location’ measurementfie answerto this is knowvn. Herewe extend
that answerto addresghe generalproblemof estimatinga scalarparameter
from a small datasample. That measuremeris treatedasif resultingfrom
perturbationsof a location measurementA proofis provided, that alwaysa
“posterior” without a prior exists andis equalto the posteriorbasedon “Jef-
freys’ prior”. Thelatterdensityis utilisedin this way only, without assuming
thatit is therealprior, becausdefreys’ prior may be updatedvhenwe com-
bine measurementsr whenwe revise the stoppingrule. Prior-free inference
is meaningfulonly if no prior existsor if it is provisionally suppressedWe
discussn whatkind of problemsthis methodis applicable.

1 INTRODUCTION

Where thereisa prior probability [...] you don't have to be a Bayesian [to apply it]: that’s because the idea of
using a prior probability makes sense because thereis a prior probability. The problemis, do you want to put in a
prior probability for something like the mass of the Higgs where thereis no prior probability? FredJames|1].

A review of relatedliteratureis in [2]. For anexampleof obtaininga posteriotlike pdf without
aprior, considera measuremertf the angulardistanceof two starsin the sky, picked at random:if we
know the precisionof the measurementhenthisis alsoour uncertaintyabouttheangle. Thisis acoarse
statemenbf an experimentalscientists intuitive interpretationof a plain ‘location’ measurementas
long asno prior beliefsaresustainedboutthelocationparameterRelatedo thisinterpretationgcertain
statisticalfoundationshave beendiscussedfiducial, structuralpivotal)t but usuallyin suchtermsthat
correspondenct a physicists intuition is not clear Herewe shallapply only Bayesiamotions;not by
forcing a prior on every analysis put by consideringheimplicationsof lackinga prior.

It mayhappenasacoincidencethattheprior-free“posterior”’is numericallyequalto the posterior
thatwould be obtainedf a certainprior wereassumedThisis truein the caseof locationmeasurements
(reviewedin the next section)for which the prior with the matchingposterioris uniformin thelocation
parameter It would be corvenientif for ary problemthe prior-free posteriorcould be calculatedby
multiplying the likelihood by some“prior with matchingposterior”. Thatis, we would like to prove
that (a) the prior-free posteriorexists always, and (b) it is equalto the productof the likelihood by a
certaindensity ‘the prior with the matchingposterior’. Theseconjecturesare nontrivial, becauseve
cannotinvoke Bayes’Theoremdirectly: thattheorempresupposebelieving a certainprior probability
not merelybelieving thatit is amathematicabbjectwhich leadsto pragmaticallyadequaténference?

Theaim of this articleis to justify the conjecturesandfind the formulafor the generalcase.The
mainideais to considerthe genericproblemof interestasif it weretheresultof succesie perturbations,
startingwith somelocationmeasurementA simpleexampleis the measuremertf the angulardistance
of two starsin the presenceof faint clouds. Even a counting experimentcan be so linked to some

1About those see[3] andcitedreferencesesp.Barnard Fisher andFraser
2The phraseuninformative prior’ is anoxymoron[5] if it is adoptecuncritically.
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locationmeasurementmaginingthat, by meansof a sequencef perturbationscontinuousprobability
is graduallydeformedto approacha sumof weighteddeltafunctions.

We shallalsodiscussn brief the questionin whatcircumstancegrior-free posteriorsapply The
problemof vectorparameteestimationis notaddresseth thiswork, to postponelealingwith questions
relatedto hierarchicgroupingof parameter§2].

2 THE RELEVANCE OF JEFFREYS’ PRIOR FOR SMALL DATA SAMPLES

2.1 Surveyof known results

Definition. If a measuremenprovidesa singledatumz for estimatinga scalarparameteg, the term
‘location parameterimeanghat, in this parametrizationthe measuremergrrore = = — 0 is anadditve
noiseof known pdf Prg(e|b) = f(e) (where‘b’ standsfor the evidencethat establishes (e)). E is
regardedascausallyunrelatedo arything elsein this model.

Whenwe runthe measuremengr a simulation,for calibrationpurposesg is known; in anactual
measuremerit is consideredixed but unknavn, correspondindo a Bayesianrandomvariable®. If
is assumedixed,the possiblevaluesof = correspondo arandomvariableX of probabilitydensity

Prx(z|0,b) = Prg(z — 0/0,b) = f(z —6). 1)

(Densitiesarerepresentetdy functionsin the statedparametrization.)

After an actualmeasurementf alongwith the datumz we also possessomeinformation H
leadingto aprior 7(0) = Pre (6| H), Bayes'Theorenmwill leadto theposteriompdf for ©: Prg(0|z, H,b)
x 7(0) f(z — ). Notethattherelatedpdf for theerror E will bePrg(e|z, H,b) = Pro(z —e|z, H,b) x
w(x—e)f(e). Thelatterpdf canbeviewedeitherastheresultof changeof variableor asthe posteriorof
analternateBayesiarestimation:to aninstrumenimaler, the quantityof interestis e. He hasestablished
prior beliefsPrg(e|b) = f(e) aboutit andis readyto updatethosebeliefs,whenhe obtainsthe datum
x andthe prior (@) for ©. Yetif no prior is availablefor 8, theinstrumentmaler will remainwith his
prior for the error, becausehereis no intermediatestepin Bayesiarninference.Takingthe datumz into
accounthis prior beliefsaboutthe errorareturnedinto beliefsaboutthe measuregharameterby means
of changingvariableto® = X — E:

Pre(0|z,b) = Prg(z — 0|z,b) = f(z — 0). (2)

In plainwords,if the precisionof a measuremeris known, the uncertaintyof the outcomeis its mirror
image,aslong asno prior for © hasyet beentakeninto consideratios. This is a provisional result(not
a maginal pdf) whetherin a Bayesiaror in a frequentistapproachassuming a location measurement.
If aprior 7(6) is admitted this pdf is supersededy the posterior

This resultis equalto thefiducial pdf in this case.lt alsoagreeswith the posteriorthatwould be
obtainedf oneassumedh prior uniformin thelocationparametefwe have not doneso). In this article
the latter densitywill be calledthefalse prior of the problem,to emphasis¢hat (like a falseceiling or
falseteeth)it hasa functionbut is nottherealthing.

In ary specificproblem, existenceof a falseprior simply meansthatwe canachiese prior-free
probabilisticinferenceby meansof multiplying the likelihood by the false prior (asit happens;not
becausaBayes’ Theoremapplies). Non-existenceof a falseprior would imply eitherthatno prior-free
“posterior” (e. g. like thatof Eq. 2) exists, or a situationin which the ratio of thatpdf to thelikelihood
would depenchotonly on @ but alsoonthedata.

“Virtually all default Bayesianmethodsrecommendhis conditionalprior, asdo various*“struc-
tural” andevenfrequentistapproaches([4], Sec.4.3in the preprint,referringto a moregeneralcase.)

3The samechangeof variablethatis usedto derive Eq. 2 hasalsobeennotedto relatethe two prosterioramentionedabove.
An equialentchangeof variablehasbeenusedto derive Eq. 1, which is the mirror imageof Eq. 2. This featureis masled if
the definition of locationmeasuremeris merelya formal assumptiorof thetwo endsof Eq. 1, asis usual.
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Therefore,in the caseof a locationmeasuremerdt least,it is legitimatefor a physicistto follow plain
intuition andconsiderthe option of no prior. Of coursewe mustexaminewhenthis optionis appropri-
ate;corversely in whatcircumstance&ducatedyuessingcanbejustified. Thesequestionsareleft for
alatersection.Herewe shallconcentrat®n generalisinghe methodbeyondthe caseof a plainlocation
measurement.

Ratherthana singlerealnumberz, the datamaybe anarrayx of n realnumbers.Providedthat
therelatederrorarrayis regardedasindependenadditive noiseof known n-dimensionatistribution, the
sameargumentsapply Thatis, prior-free probabilisticinferencecanbe obtained,andthe relatedfalse
prior is againuniformin 6.

A specialcaseof arraylocationmeasuremens obtainedfrom the combinationof a setof mea-
surementof the samelocation parameter Becausea falseprior is not a real prior, we cannot(yet)
concludefrom the existenceof a falseprior for a singlelocation measuremerthat the same(or ary)
falseprior would applyto a combinationof suchmeasurement®ut this conclusions obtaineddirectly,
becausea combinationof locationmeasurements a specialcaseof anarraylocationmeasurement.

Theunisonof differentstatisticafoundationsn thecaseof locationmeasurementsoesnotextend
to the generalproblem. Only with asymptoticapproximationsassuminggreataccumulationof data,
we find an agreementgain. This is dueto the existenceof a reparametrizatiorf 4, for which the
condition of location measuremenis asymptoticallysatisfiedin somesense as several authorshave
obsered (thoughnot alwaysin clearterms,asnotedin [2]).* Jefreys’ prior is definedasa densitythat
is uniformin thatparametrizatioR. In the original parametrizationit is (usingPr(x|6) asshorthandor
Prx (x|6, mode))

0.5 0.5
71(0) [ / &'z [0 Pr(x|6) /6] /Pr(x|0)] - [— / d"z Pr(x|9) [0? ln(Pr(x|0))/802H

3)
The samedensityhasalso beendefendedn termsof its utility, usingdecision-theoretidaarguments
with asymptoticassumption$2]. It hassomeremarkableproperties. It is invariant underreparame-
trizationsof . Also, if we considera combinationof two measurementslefreys’ prior is updated,
usingthe combinedPr(x|#). Note thata real prior would not be updatablethe probability would be
updatedout the prior would remainfixed, unlessthe prior informationwererevised. Yetif we combine
two measurementsf the samekind (thatis, with identicalstatisticalmodelsPr(x|f)) the updatingof
Jefreys’ prior leavesit unchanged.

Jefreys’ prior is meantfor the asymptoticcase,but in the restof this work we shall extendthe
rangeof its application.As a startingpoint, notethatfor locationmeasurementhefalseprior coincides
with Jefreys’ prior.

“Hereis a condensedccount.As dataaccumulateve expectthat the sampledistribution almostcertainlyapproacheshe
theoreticalPr(x|0), thereforewe think of thedatasampleasalump thatcanberepresentetly meansf asinglenumberif we
disrggardthe asymptoticallynggligible statisticalnoise. Thatnumbermay be the maximume-likelihood estimategeneratedy
thatsample.For ary fixed 8y, the distribution of the m-| estimateapproacheshe Gaussiarshapewith varianceapproaching
zeroasymptotically In generalthat variancealsodependon 8y, but if we usean appropriatereparametrizatiori'variance-
stabilizing’) of © thevarianceof them-| estimatecanbecomendependentf the assumedrue value,regardlesof the sample
size, provided that it is large enough. Becauseof asymptoticuniformity in the shapeof the distribution of the m-I estimate
aboutary tentatve valued, we have approximatelyformal equivalencewith the definition of alocationparameter

*Oneway of deriving theform of a variance-stabilizingparametrizationconsidergroupingthe accumulatediatainto bins
of x, for which the Gaussiarapproximations applied,andfind a conditionrequiredfor the constang the secondderivative of
thelog-likelihood.

To seewhy thisis so, notethatthe asymptoticcase which consistsof a large numberof repetitionsof the samemeasure-
ment,canalsobethoughtof asrepeatingairs of the samemeasurement or triads,andsoon.
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2.2 Prior-freeinferencein the generalcase

We have seencases(combinationsof location measurementsand the asymptoticcase)in which the
resultcan be obtainedby multiplying the likelihood by a falseprior, but we have not yet proved that
this methodis applicablealsoin the generalcase. As statedin the Introduction,to studythe general,
small-sampleasewe shallregardary measuremerdsthe productof asequencef smallperturbations,
startingeitherwith somelocationmeasurementr with a finite combinationof locationmeasurements
(dependingpn whetherour measuremergrovidesa singledatumor anarrayof data).

In this sectionwe shallconsidetaproofthat,in thelimit of infinitely mary successk infinitesimal
perturbationsthe property“prior-free inferencebeingequvalentto usingJefreys’ prior” is preseredto
thefirst orderin the sumof the strengthof perturbationsBut in this limit all higherordereffectsvanish;
thefirst-ordertheoremis all we needto prove.

Herewe do not scrutinisethe assumptiorthatany problemof interestcanbe derved by meansof
perturbationsstartingwith locationmeasurementdet us just supposeso. We alsoneedto assumehat
the existence of a prior-free resultis not canceledby a perturbation.For a physicistthis assumptions
self-evident: it would be bizarreif prior-free inferencecould be extractedfrom somemeasuremerttut
wereprecludedor aninfinitesimally perturbedneasurement.

Statisticalanalysisof all kindsis basedon the following assumption.If two measurementare
describedy equialentstatisticalmodels,i.e.

(V(x,60)) Prx,(x|©4 =6,Model A) = Prx,(x|©p = 6, Model B), 4)

andwe presumeequivalentprior information(or no prior, asfaraswe areconcernedjhenthe samedata
leadsto the sameinferencein eithercase.For studyingperturbationsye needto adaptthis assumption
for casesin which the equality is not exact but approximate whetherto a certainorderin a power

expansionor in a probabilisticsense We shallregardModel B asa variationof Model A4, andwill be

concernedvith determiningthe correspondingariationof the prior-free posterior

Proof. If we supposedhe existenceof a transformation(thatis, reparametrizationpf the data
spacealongwith a transformatiorof the parametespace suchthatthe transformedviodel B be equi-
alentto the unalteredMiodel A, thenthe prior-free posteriorfor Model B would be definedin the new
parametrizationjust by copying the correspondinglensityof Model A. Yetin generalsuchan exact
matchingdoesnot exist.

We candefine“approximatelymatching”transformationsf we take into accountthe prior-free
posteriorin Model A,” Prg(|x, Model A) anduseit to determineaveragedifferenceof the two sides
in Eq. 4, aswell asthe varianceof the distribution of thatdifference:for “approximatematching”,the
averageis requiredto be zeroandthe variancenot far from the minimal possible thatis, within a fixed
fractionaltolerance say80%. This definition dependn the degreeof tolerance(but this will be seen
to be of no consequenceNote that, evenif a bestmatchingweredefineduniquelyby the requirement
of minimal variance ary othertransformatiorthatresultsto a variancewithin 1% from theminimal one
would presennearlyequalclaim to approximatelymatchingModel A.

With ary aproximatematching,if we copy the prior-free posteriorPreg(6|x, Model A) into a
densityof the parameteof thetransformedVodel B, asif thetwo modelswerematchedexactly by way
of this transformationwe will obtainthe prior-free posteriornot of Model B but of a mutatedmodel.
(This obseration will be usefulwhenwe considervarying models,so that, in the limit, the minimal
varianceapproachegero.)

Now let us think of Model B asthe resultof a perturbationof Model A, of strengtht. The
perturbednodelcanbeexpressedis’Prx (x|© = 0) = "Prx (x|© = 0) + t g(x;0) + O(t?), wheret is
the perturbatiorstrengthandg is somedensitywith regardto x andalsoa functionof 4. In this section,
thesign“~" denotesanexpansionto thefirst order

’In studyingperturbationspnemakesuseof anapproximateesultin orderto calculatethe next correction.
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We take advantageof tranformationsof dataarrayx andof paramete#, to vary theform of
tPr_ (x]#), trying to matchthe unperturbedorm °Pr_ (x|#). Any transformatiorfrom (x, ) to (y, ¢)
satisfiegelationslikey = x + te(x) and¢ = 6 + ¢ f(0), for somescalarfunction f andarrayfunction
e, which areatour disposato define,providedthattheresultingtransformationgreone-to-one.

Whenthedataarrayis transformedprobability densityis multiplied by the Jacobiardeterminant,
J. Onthebasisof theexpansionI + eA| = 1 + €Tr(A) + O(e?), weobtainJ ~ 1— t " de; /0z;.

Thetransformedrobability densityis 'Pry (y|® = ¢) ~ J Prx(y — te(x)|© = ¢ — tf(4))
~ Prx(y|© = ¢) +t [9(x;4) — "Prx(y|© = ¢) X Oei(y)/0yi — X 0 "Prx(y|© = ¢)/dy; ei(y)
— 0 Prx(y|© = ¢)/0¢ f(¢)]-

Accordingto the earlierdefinition, the pair of transformationspecifiedby f ande constitutean
“approximatematching’to thefirst orderiff the sumin squarebracletsis of zeroaverageandof nearly
(within somefixed fractionaltolerance)minimal variance with regardto the prior-free posteriorof the
modelwith ¢t=0. With ary suchpair of f ande, let uscopy the prior-free posteriorof the unperturbed
modelinto a densityof ¢, asif the matchingwere exact; the resultcanbe thoughtof asthe prior-free
posteriorof a mutatedmodel,which is definedby droppingthe ¢ termin the lastequationabove. Here
we have assumedhatthe assumptiorexpressedn Eqg. 4 alsoholdsasafirst-orderexpansion.

If we happerto know thatJefreys’ prior providesprior-freeinferencefor t=0, this mustalsobe
trueto thefirst orderin ¢ for mutatedmodels.NotethatJefreys’ prior is invariantundertransformations
of the parametespaceaswell asof thedataspace.

Thedifferenceof ary mutatednodelfrom thenon-mutatedne(thelatteris theresultof perturba-
tion with strengtht) is zeroin the zero-orderexpansion zero-in-the-geragein thefirst-orderexpansion
in ¢, andwith varianceof the secondrder In generafor eacht thereis aninfinite numberof suchmu-
tatedmodels,eachcorrespondingo anapproximatelymatchingtransformationnotethatthe difference
betweerary two suchmodelshasthe sameexpansionpropertiesasthe differencefrom the non-mutated
model.

We returnto studyingthe sequencef perturbationswvhich leadsfrom a location modelto the
realmodel. This correspondenckecomesxactin anappropriatdimit, asthe numberof perturbations
increaseswithout boundwhile the strengthof eachperturbationgoesto zero. Considerthe mutated
modelsthat arisein the first perturbation;eachof thosemutatedmodelsleadsto a family of mutated
modelsin thesecondperturbationandsoon.

In thefinal perturbationanextendedramily of mutatedmodelsis assembledthedifferenceof ary
two suchmodelsis zeroin thezero-orderzero-in-the-geragein thefirst orderof thesumof perturbation
strengthsandof variancethatvanishesn the limit, becausét is O(2). All higherordertermsvanish
identicallyin thislimit. Thesamecanbesaidfor thedifferencebetweerary mutatednodelandthenon-
mutatedmodel. Therefore,in the limit, the whole final extendedfamily of mutatedmodelsshrinksto
approximatehe non-mutatednodel. Thisresultdoesnotdependnthetoleranceve setin thedefinition
of approximatematching:with wider tolerancewe would getlarger families,but the limit would bethe
same.

Accordingto the above considerationdpr eachmutatedmodel,the prior-free posterioris already
definedo thefirst orderin thesumof perturbatiorstrengthsBut higherordertermsvanishin thelimit,
thereforethedefinitionbecomesxactin thatlimit. Becausef theshrinkingof thefinal extendedramily
of mutatedmodelsin thelimit, thisis the definitionof the prior-free posteriorfor therealmodel.

As notedin the previous section,the falseprior of ary location model coincideswith Jefreys’
prior. Accordingto theaborve proofthesameholdsfor eachgeneratiorof mutatednodelsn thesequence
of perturbationgthatis, to thefirst orderwith vanishinghigherorder effect) thereforeit alsoholdsfor
therealmodel.
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2.3 Application to problemsin high-energy physics

In HER, wheredatasamplesareoften smallor empty suchconsiderationgarerelevant. In the caseof a
countingexperimentof a pre-setduration,Jefreys’ prior for the Poissorrate is oc =95, If asearch
hasreturnedanemptysampleanupperlimit basedn this prior is abouthalf of thecorrespondingipper
limit thatis basedon a prior uniformin p. If thesamplesizeis n, the Bayesiaraveragefor pisn + 0.5

ratherthann + 1. More importantthanimplementingheseadjustmentsye tacklethe‘anxiety’ whether
usinga prior makessenseatall.

3 WHEN DO WE NEED PRIOR-FREE INFERENCE

Hereis anexample.In ageodesisuney involving threemountainpeakswe areinterestedn thesum,#,
of theanglesof thattriangle.Besideghesignificanceof themeasuremerior testingspace-timeheories,
supposehatwe arealsointerestedn estimatingd, evenif only for the sake of quotingaresult.

Every gravitational theory of space-timeprovides a model. If someonebelievesthat Euclidean
geometryis necessarilytrue, thenhis prior is a deltafunction, §(¢ — ). Strictly speakinghe cannot
evendefinelik elihoodfor # #£n becausesucha definitionwould be basedon a contradiction.

In the approachbasedon Einsteins GeneralRelatvity, 6 is expressedn termsof relatedmag-
nitudesM; (e.g. the massof the Earth)andphysicalconstants’;. The pre-datanformationon these
parameterss expressedas a joint probability density 7({M;},{C}}), from which we can calculate
the pre-dataprobability densityof 8. The measurementipdateshe former probability thereforealso
updatesjndirectly, the pdf regardingd. If the measuremeris not preciseenough,the resultwill be
dominatedby pre-datainformation. Note that, in the exacttreatmentg is not a parameteof the main
calculations:we do not definelikelihoodof # usingprobability Prx (x|, mode). The sameconsidera-
tionsapplyto ary otherspace-timeyravitationaltheory?

If we cannoteven definea model-independeriikelihood Prx (2|6, ) for all implicatedmodels,
thereis noway to achieve universallyvalid estimationof 8, evenif we hadagreedn somecompromise
for prior. (At mostwe canperforma significancetestfor eachmodelseparately However, from the
experimentalistspoint of view thereis an empirically derived probability Pr x (z|f, apparatus based
on calibrationsandtrials of the threeanglemeasuringlevicesinsidea smalllaboratory— provided that
we disregardthe physicalmeaningjn eachtheory of the parametemeasuredby meansof the suney.

Fromthepointof view of eachtheory theabove probabilityis only anapproximationlts validity
is explainedby the applicability of Euclideangeometryin the small rangeof the laboratory because
the spacecurvature deducedfrom the approximatelyknown M; and C; is not too large. Yet, if the
experimentaliss formulais consideredor valuesof 8 quiteremovedfrom 7, spacecurvaturewould be
large enoughto have aneffect evenin lab calibrationruns,accordingto thetheory

From the experimentalisg point of view this concern(if heis awareof it) is purely theoretical
becausehereis ampleempiricalevidencethat Euclideangeometryis in agreementvith measurements
insidethelaboratory After all, if thesurwey returnedsuchavaluefor 6, the modelwould bediscredited,
for failing to explain the applicability of Euclideangeometryinsidethelab.

Now the problemcanbe formulatedsimply asestimatingthe experimentaliss 6 from datumz.
Note thatthe agreedform of Prx (z|6, apparatuspresupposedisregardingthe physicalmeaningof 6.
Accordingly thereis no prior for the experimentalisg 6. (Supposdor examplethata generalrelatiist
adoptedhis pre-datapdf for 6 asa prior; asidefrom the logical inconsisteng of mixing the empirical
likelihood with a theoreticalprior, note that this would be an inaccuratetreatment,becauset would
ignorecorrelationsn = ({M;}, {C;}).) In otherwords,the prior-free optionis theonly way to formulate

81t is possibleto invent additionalparametersand contrive somegeneraimodelthat encompassessspecialcasesGeneral
Relatvity andEuclideangeometry Unlessthis generalmodelis basedon someplausibleguiding principle, the definition of
likelihoodin theintermediatecaseswill bedeemedarbitrary Thatis, anartificial generatheorycannotsubsumehe particular
theoriesn this discussion.
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parameteestimationthatdoesnot dependon theassumptionsf a particularmodel.

This is not to saythat thereis no placefor ary private or tentatve assumption.A professional
practitionermay apply educatedguessingn making qualified decisions,diagnosesand forecasts. A
civil engineerusually assumesvithout testingthat Euclideangeometryis an adequateapproximation.
For anotherexample,considera physicianwho wantsto interpretthe resultsof the HIV testof a patient
who hasbeenclassifiedasa regular morphineuser Becausehe reliability of the resultis limited, the
physicianwantsto take into accountthe rate of HIV infectionin thatgroup, but he doesnot know that
rate. Yet he knows the rate of infection amongheroin users,and he believes that the mechanisnthat
accountsfor the high ratesof infection in that group also appliesin the caseof morphineusers. He
calculateshis posteriorprobability of HIV infection for this patientusingthe assumptiorthat the two
groupratesareapproximatelyequal.

But whenwe estimatea parametemwe mustrevert to assumptionghat are not disputedin the
context of this measuremertt. In the context of the last example,after we samplea group of people
to estimatethe grouprateof HIV infection, whenwe analysethe resultwe may needto disregard our
prior beliefsaboutthe mechanisnof infection, if they arenot preciseenough,or not sharedby every
practitioner

4 CONCLUSIONS

In the caseof plainlocationmeasurementtuitive formationof prior-freeprobabilisticinferenceis jus-
tified from a Bayesiarpoint of view, aslong asno prior is admitted.Applying successke perturbations,
we canextendthe notionof prior-free resultto the generalcaseof scalarparameteestimation.

The calculationof ary prior-free resultcanbe obtainedoy multiplying thelikelihoodby Jefreys’
prior. Thelatteris nottherealprior of the problem,only a calculationaltool. Thatis, we do not apply
Bayes'Theoremywe only take advantageof a shortcut. Whenwe combinetwo differentmeasurements
we mustrevisethe prior, to be Jefreys’ prior of the combinedstatisticalmodel. The stoppingcondition
of thesamplingaffectsJefreys’ prior, in contrasto arny casein which arealprior is applied.

Qualifiedconjecturesgvenif suitablefor professionatlecisionmaking, may be questionablen
the contet of parameteestimation. For suchcasesandwhenthereis no prior available,the no-prior
optionis neededThis approachrequireshatPr x (2|0, apparatuscanbe derived within someadequate
approximation(that is, in comparisonto the minimal standarddeviation) on the basisof presumably
undisputednformationandassumptiondjk e calibrationdata.
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