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Abstract
A summaryof the basicprinciplesof statistics.Both the BayesianandFre-
quentistpointsof view areexposed.

1 The Problems that Statistics is supposed to Solve.

Statisticalproblemscanbegroupedinto fiveclasses:� Point Estimation:Find the“best” valuefor a parameter.� Interval Estimation:Find a rangewithin which thetruevalueshouldlie, with agivenconfidence.� HypothesisTesting:Comparetwo hypotheses.Find whichoneis bettersupportedby thedata.� Goodness-of-Fit Testing:Findhow well onehypothesisis supportedby thedata.� DecisionMaking: Make thebestdecision,basedon data.

In theFrequentistmethodology, thisseparationis especiallyimportant,andbooksonStatisticsare
oftenorganizedinto chapterswith just thesetitles. Thereasonfor this importanceis thatoftenthesame
problemcanbe formulatedin differentwaysso that it fits into different classes,but the fundamental
questionbeingaskedis differentin eachclass,sotheresultingsolutionmustbeexpectedto bedifferent.
The lessonis: Make sureyou know what questionyou want to ask,and thenchoosethe appropriate
methodsfor that question.And beawarethatseeminglyunimportantdifferencesin theway a problem
is posedcanmake largedifferencesin theanswer. Thesecretto gettingtheright answeris to understand
thequestion.

In theBayesianmethodology, thisseparationis muchlessimportant,andBayesiantreatmentstend
not to beorganizedin this way. Bayes’Theoremis theconceptwhich unifiesBayesianinference,since
themethodsfor solvingproblemsin all classesarebasedon thesametheorem.

2 Probability

All statisticalmethodsarebasedon calculationsof probability.

In Mathematics,probabilityis anabstract(undefined)conceptwhich obeys certainrules.Wewill
needaspecificoperationaldefinition.Therearebasicallytwo suchdefinitionswecoulduse:� Frequentistprobability is definedasthe limiting frequencyof aparticularoutcomein a largenum-

berof identicalexperiments.� Bayesianprobability is definedasthedegreeof belief in a particularoutcomeof a singleexperi-
ment.

2.1 Frequentist Probability

This probabilityof aneventA is definedasthenumberof timesA occurs,dividedby thetotal number
of trials, in thelimit of a largenumberof identicaltrials:

�������	� 
��������
�������
�

where
�

occurs
�������

timesin
�

trials. Frequentistprobabilityis usedin mostscientificwork,becauseit
is objective. It can(in principle)bedeterminedto any desiredaccuracy andis thesamefor all observers.
It is theprobabilityof QuantumMechanics.
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Justlikethedefinitionof electriccharge[1], thedefinitionof frequentistprobabilityis aconceptual
definition which communicatesclearly its meaningandcan in principle be usedto evaluateit, but in
practiceoneseldomhasto resortto sucha primitive procedureandgo experimentallyto a limit (in the
caseof theelectricfield, it is evenphysicallyimpossibleto go to the limit becausecharge is quantised,
but thisonly illustratesthatthedefinitionis moreconceptualthanpractical).

However, eventhoughonedoesnot usuallyhave to repeatexperimentsin orderto evaluateprob-
abilities,thedefinitiondoesimply a seriouslimitation: It canonly beappliedto phenomenathatarein
principle exactly repeatable.This implies alsothat the phenomenamustbe random,that is: identical
situationscangive rise to different results,somethingwe areaccustomedto in QuantumMechanics.
Thereis greatdebateaboutwhethermacroscopicphenomenalike coin-tossingare randomor not; in
principle coin-tossingis classicalmechanicsandthe initial conditionsdeterminethe outcome,so it is
not random. But suchphenomenaareusually treatedasrandom;it is sufficient that the phenomenon
behavesasthoughit wererandom: initial conditionswhich areexperimentallyindistinguishableyield
resultswhichareunpredictablydifferent.

2.2 Bayesian Probability

Thiskind of probabilityis moregeneral,sinceit canapplyalsoto unrepeatablephenomena(for example,
theprobability that it will rain tomorrow). However, it dependsnot only on thephenomenonitself, but
alsoon the stateof knowledgeandbeliefsof the observer. Therefore,BayesianP(A) will in general
changewith time. Theprobabilitythatit will rainat12:00onFridaywill changeaswegetcloserto that
dateuntil it becomeseitherzeroor oneon Fridayat12:00.

We cannotverify if the Bayesianprobability P(A) is “correct” by observingthe frequency with
which A occurs,sincethis is not theway probability is defined.Theoperationaldefinition is basedon
“the coherentbet” (deFinetti [2]). O’Hagan[3] givestwo differentdefinitions,oneof which is basedon
acomparisonwith thebelief in theoutcomeof a processfor which thefrequentistprobabilityis known.

Therehasbeenconsiderableeffort (in particular, by Jeffreys) to developanobjectiveBayesianism,
but this is generallyconsideredto benot entirelysuccessful.Nearlyall moderndefinitionsof Bayesian
probabilityaresubjective, sowe will considerheremainly subjective Bayesianism.

3 Fundamental Underlying Concepts

Thehypothesis is whatwe wantto test,verify, measure,decide.

Examples:H: Thedataareconsistentwith theStandardModel.
H: Themassof theprotonis ��� (unknown)
H: Aspirin is effective in preventingheartdisease

A Random Variable is datawhich cantake on differentvalues,unpredictableexcept in proba-
bility:

���
data� hypothesis

�
is assumedknown, providedany unknownsin thehypothesisaregivensome

assumedvalues.

Example:for a Poissonprocess,
�

is a randomvariabletakingon positive integervalues,and
�

is theprobabilityof observing
�

eventswhentheexpectedrateis � :

����� � � �	����� � � ��"!
A Nuisance parameter is an unknown whosevalue doesnot interestus, but is unfortunately

necessaryfor thecalculationof
���

data� hypothesis
�
.

TheLikelihood Function # is
���

data� hypothesis
�

evaluatedat theobserveddata,andconsidered
asa functionof the(unknownsin the)hypothesis.
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3.1 Bayes’ Theorem

Wefirst needto defineconditionalprobability:
����� � $ � meanstheprobabilitythatA is true,giventhatB

is true.For example
�%�

symptom� illness
�

suchas
���

headache� influenza
�

is theprobabilityof thepatient
having aheadacheif shehasinfluenza.

Bayes’Theoremsaysthattheprobabilityof bothA andB beingtruesimultaneouslycanbewrit-
ten:

����� � $ �&��� $ �	�'��� $(� ���&�����)�
which implies:

��� $(� �)�	�
����� � $ �&��� $ ��������

whichcanbewritten: ��� $(� �)�*�
����� � $ �&��� $ ������ � $ �&�%� $ �,+������ � not$ �&���

not$ �
This theoremthereforetells ushow to invert conditionalprobability to obtain

����� � $ � whenwe know��� $(� ��� .
Example of Bayes’ Theorem

Supposewe have a test for influenza,suchthat if a personhasflu, the probability of a positive
resultis 90%,andis only 1% if hedoesn’t have it:

�%�.-0/ � flu
�	�'13254

[10%falsenegatives]

�%�.- / � not flu
�6�'1327198

[1% falsepositives]

Now patientPtestspositive. Whatis theprobabilitythathehastheflu? Theanswerby Bayes’Theorem:

���
flu � - / �6�

���.- / � flu
�&���

flu
�

���.- / � flu
�&�%�

flu
�:+����.- / � not flu

�&�%�
not flu

�
Sotheanswerdependson thePrior Probability of thepersonhaving flu, thatis:� for Frequentists,thefrequency of occurenceof flu in thegeneralpopulation.� for Bayesians,theprior belief thatthepersonhastheflu, beforeweknow theoutcomeof any tests.

If we are in the winter in Durham,perhaps
���

flu
�

is 1% . On the otherhand,we may be in another
countrywhereit is avery rarediseasewith

�%�
flu
�6�;8<1 �>=

If we apply the samediagnostictest in eachof thesetwo places,we would get the following
probabilities:

flu = 1% flu
�;8<1 �>=���

flu � - / � 132@?BA 8<1 � C���
flu � - � � 13271D198 8<1 �FE

Sothis testwould beusefulfor diagnosingtheflu in Durham,but in anotherplacewhereit wasa rare
diseaseit would alwaysleadto theconclusionthat thepersonprobablydoesnot have theflu evenif the
testis positive.

Note that,aslong asall theprobabilitiesaremeaningfulin thecontext of a given methodology,
Bayes’Theoremcanbeusedaswell by Frequentistsasby Bayesians.Theuseof Bayes’Theoremdoes
not imply thatamethodis Bayesian,however theinverseis true:all Bayesianmethodsmakeuse(at least
implicitly) of Bayes’Theorem.
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4 Point Estimation - Frequentist

Commonnotation: for all estimation(sections4 – 6), we are estimatinga parameterG using some
data,andit is assumedthat we know

�%��HBIKJ&I � G � , which canbe thoughtof asthe Monte Carlo for the
experiment,for any assumedvalueof G .

An Estimator is a function of the datawhich will be usedto estimate(measure)the unknown
parameterG . The problemis to find that function which givesestimatesof G closestto the true value
assumedfor G . Thiscanbedonebecauseweknow

���
data� truevalueof G � andbecausetheestimateis a

functionof thedata.Thegeneralprocedurewould thereforebeto take a lot of trial estimatorfunctions,
andfor eachonecalculatetheexpecteddistribution of estimatesabouttheassumedtruevalueof G . [All
thiscanbedonewithoutany experimentaldata.]Thenthebest(mostefficient)estimatoris theonewhich
givesestimatesgroupedclosestto thetruevalue(having a distribution centredon thetruevalueandas
narrow aspossible).

Fortunately, we don’t have to do all thatwork, becauseit turnsout thatundervery generalcon-
ditions, it canbeshown that thebestestimatorwill be theonewhich maximizestheLikelihood # � G � .
This is thejustificationfor thewell-known methodof MaximumLikelihood.

Note that the definition of the “narrowest distribution” of estimatesrequiresspecifyinga norm
for thewidth; theusualcriterion,wherebythewidth is definedasthevariance,leadsto theMaximum
Likelihoodsolution,sincethis is (asymptotically)theminimum-varianceestimator.

An importantandwell-known propertyof theMaximum-likelihoodestimateis that it is metric-
independent:If thehatrepresentstheMaximum-likelihoodestimate,then LM � G �*� M � LG � .
5 Point Estimation - Bayesian

For parameterestimation,we canrewrite Bayes’Theorem:

���
hyp� data

�	� �%�
data� hyp

�&���
hyp

�
���

data
�

andif thehypothesisconcernsthevalueof G :

�%� GN� data
�*� ���

data� G �&��� G ����
data

�
which is a probability density function in the unknown G . Sinceit is a pdf, it mustbe normalized:OQP ��� GN� data

�	�;8
, whichdetermines

�%�
data

�
, considerednow asanormalizationconstant.

Assigningnamesto thedifferentfactors,we get:

Posteriorpdf
� G �	R # � G �TS Priorpdf

� G �
TheBayesianpoint estimateis usuallytakenasthemaximumvalueof thePosteriorpdf.

If thePriorpdf is takento betheuniformdistribution in G , thenthemaximumof thePosteriorwill
occurat the maximumof # � G � , which meansthat in practicethe Bayesianpoint estimateis often the
sameastheFrequentistpointestimate,althoughfollowing avery differentreasoning!

Note that the choiceof a uniform Prior is not well justified in Bayesiantheory (for example,
it seldomcorrespondsto anyone’s actualprior belief about G ), so the bestBayesiansolution is not
necessarilytheMaximumLikelihood.

Notealsothatthechoiceof themaximumof theposteriordensityhastheunfortunatepropertyof
beingdependenton themetric chosenfor G . In particular, considerthe “natural” metric, that functionM � G � in whichthepdf

�%U M � G �WV is uniformbetweenzeroandone:in thismetric
�

hasnomaximum.This
problemis easilysolvedby choosingthepoint estimatecorrespondingto themedianP (50thpercentile)
insteadof themode(maximum),but thenit will not in generalcoincidewith theMaximumLikelihood.
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6 Interval Estimation - Bayesian

Herethegoal is to find an interval which will containthe truevaluewith a givenprobability, say90%.
Sincethe PosteriorProbabilitydistribution is known from Bayes’Theorem(seeabove), we have only
to find an interval suchthat the integral underthePosteriorpdf is equalto 0.9 . As this interval is not
unique,theusualconventionis to choosetheinterval with thelargestvaluesof theposteriorpdf.

Therearethreearbitrarychoicesto bemadein Bayesianestimation,andthemostcommonchoices
are:

1. Theuniform prior.

2. Thepoint estimateasthemaximumof theposteriorpdf.

3. Theinterval estimateastheinterval containingthelargestvaluesof theposteriorpdf.

Note thatall thesechoicesproducemetric-dependentresults(they give a differentanswerunder
changeof variables),but thefirst two happento cancelto yield themetric-independentfrequentistresult.

A metric-independentsolutionis easilyfoundfor thethird case,themostobviouspossibilitybeing
thecentral intervals, definedsuchthatthereis equalprobabilityaboveandbelow theconfidenceinterval.
However, this would have the unfortunateconsequencethat a Bayesianresultcould never be given as
anupperlimit: Evenif no eventsareobserved,thecentralBayesianinterval would alwaysbetwo-sided
with anupperanda lower limit.

7 Interval Estimation - Frequentist

Assumingasusualthatweknow
�%��HBIKJ&I � G � , thegoalis to find two functionsof thedataX	Y � data� G � andX[Z � data� G � suchthat,for any (true)valueof G ,

��� X Y]\ G \ X^Z �6�_13254
Thenthe 90% interval is definedby X	Y � observeddata

�
and X Z � observeddata

�
. If we could find such

functions,thiswouldassurethat:
If theexperimentwererepeatedmany times,andthedataweretreatedusingthefunctions X Y and X[Z to
definethe interval, thenthe interval would containthe truevaluein 90%of thecases.This propertyis
calledcoverage.

J. Neyman[4] showedhow to constructsuchfunctionsin themostgeneralcase,therebysolving
theproblemof how to find confidenceintervalswhichhaveagivencoverage.Sincecoverageis themost
importantpropertyof confidenceintervals, this wasa very importantmilestonein frequentiststatistics.
Somecomments:

1. Coveragealonedoesnot determinetheconfidenceintervals uniquely. Thereis anotherdegreeof
freedomremaining,andthiscanberesolvedin variousways,themostcommonbeing:� Central intervalsarecentralin the data, not in the parameter, so they canaswell produce

upperlimits astwo-sidedlimits, andthey have thenicepropertyof beingunbiased,but also
thenot-so-nicepropertythattheinterval canbeempty(for example,anupperlimit couldbe
zerofor aparameterthatmustbepositive).� Feldman-Cousinsintervalsaretheclosestto central(leastbiased)amongall intervalswhich
are guaranteedto be non-empty. This is currently consideredto be the state-of-the-art.
The authorspoint out that theseintervals are just standardfrequentistintervals using the
likelihood-ratioorderingbasedon theNeyman-Pearsoncriteriaasgivenin KendallandStu-
art [5], however thepaperby FeldmanandCousins[6] givesthebestunifiedtreatment.� Ciampolillo intervals[7] arethemostbiasedbut have thenicepropertythatwhenno events
areobserved,theupperlimit is independentof theexpectedbackground.
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All theabove have exactfrequentistcoveragewhenthedatais continuous.For discretedatathere
is an additionalproblemthat exact coverageis not alwayspossible,so we have to acceptsome
over-coverage.

2. The Neyman procedurein general,and in particularall of the threeexamplesabove are fully
metric-independentin boththedataandtheparameterspaces.

3. Theprobability statementthatdefinesthecoverageof frequentistintervals appearsto be a state-
mentabouttheprobabilityof the truevaluefalling insidetheconfidenceinterval, but it is in fact
the probabilityof the (random)confidenceinterval covering the (fixed but unknown) true value.
Thatmeansthatcoverageis notapropertyof oneconfidenceinterval, it is apropertyof theensem-
ble of confidenceintervalsyoucouldhave obtainedasresultsto your experiment.This somewhat
unintuitive propertycausesconsiderablemisunderstanding.

8 Hypothesis Testing - Frequentist

Comparetwo hypothesesto seewhich onebetterexplains(predicts)thedata. The two hypothesesare
conventionallydenoted:̀�a thenull hypothesis;and `bY thealternative hypothesis.If thehypothesesare
simple hypotheses, they arecompletelyspecifiedsowe know

���
data� `�a � and

���
data� `bY � .

If c is thespaceof all possibledata,theproblemis to find aCritical Region (in whichwe reject`�a ) dfegc suchthat ���
data ehd]� ` a �6�ji

is assmallaspossible,andat thesametime,���
data ekcmlnd]� `bY �6�po

is alsoassmallaspossible.i
is theprobabilityof rejecting̀�a whenit is true.This is theerrorof thefirst kind, or loss.

8 l i
is theacceptance of thetest.Somebooksinterchangethedefinitionsof

i
and

8 l i
.o

is the probability of accepting̀�a when `bY is true. This is the error of the secondkind, or
contamination.

8 l o
is thepower of thetest.

Whenthetwo hypothesesaresimplehypotheses, thenit canbeshown thatthemostpowerfultest
is theNeyman-PearsonTest[8], whichconsistsin takingasthecritical regionthatregionwith thelargest
valuesof q asr q Y , where q t is thelikelihoodunderhypothesis̀ut .

Whena hypothesiscontainsunknown parameters,it is said to be not completelyspecifiedand
is calleda compositehypothesis. This importantcaseis much morecomplicatedthan that of simple
hypotheses,and the theory is lesssatisfactory, generalresultsholding only asymptoticallyandunder
certainconditions. In practice,Monte Carlo calculationsare requiredin order to calculate

i
and

o
exactly for compositehypotheses.

9 Hypothesis Testing - Bayesian

Recallthataccordingto Bayes’Theorem:

���
hyp� data

�	� �%�
data� hyp

�&���
hyp

�
���

data
�

Thenormalizationfactor
���

data
�

canbedeterminedfor thecaseof parameterestimation,whereall the
possiblevaluesof theparameterareknown, but in hypothesistestingit doesn’t work, sincewe cannot
enumerateall possiblehypotheses.However it canbe usedto find the ratio of probabilities for two
hypotheses,sincethenormalizationscancel:

vj� ��� `�aB� data
�

��� ` Y � data
� � # � `�a �&��� `�a �

# � ` Y �&��� ` Y �
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10 Goodness-of-Fit Testing (GOF)

Herewe aretestingonly onehypothesis̀�a . Thealternative is everythingelse,unspecified.

TheFrequentistmethodfor GOF is thesameasfor hypothesistesting,exceptthatnow only `�a
and

i
areknown. We cannotknow the power of the testsincethereis no alternative hypothesis(we

don’t know what we aretrying to exclude). We canonly saythat if thedatafall in thecritical region,
they fail thetest(incompatiblewith thehypothesis̀�a ).

ThemostimportantGOFtestis thePearsonChisquaredTest[9]. Indeedit is without a doubtthe
mostoften usedstatisticalmethodin history. Onecanestimatethat in the reconstructionof HEP data
alone,it is probablyinvokedthousandsof timespersecondin computersaroundtheworld.

For thePearsontest,the teststatisticis thesumof thesquaresof deviationsbetweendatapoints
andthehypothesis,with eachdeviation divided by thestandarddeviation of thedata. Pearsonshowed
thatunderthenull hypothesis,thisstatisticis distributedasymptoticallyasaknown function(now usually
calledtheChisquaredFunction)with

�
degreesof freedomif thereare

�
datapoints,independentlyof

thehypothesisbeingfitted. Testsfor which theexpectedvaluesof theteststatisticdo not dependon the
hypothesisarecalleddistribution-free.

Therearemany othertestswhichhavebeenfoundto work well for particularproblems.For physi-
cists,themostimportantis probablytheKolmogorov-Smirnov testfor compatibilityof one-dimensional
distributions(unbinned).

Thereis no way to do Bayesianhypothesistestingwithout analternative hypothesis.Goodness-
of-fit testingis thereforethedomainof Frequentiststatistics.

11 Decision Theory

Fordecision-makingweneedto introduceanew concept,theloss incurredin makingthewrongdecision,
or moregenerallythe lossesincurredin takingdifferentdecisionsasa functionof which hypothesisis
true.Sometimesthenegative loss(utility) is used.

Simplestpossibleexample:Decidewhetherto bring anumbrellato work.

Thelossfunctionmaybe: Loss(umbrellaif rain) = 1
Loss(umbrellaif no rain) = 1
Loss(noumbrellaif no rain)= 0
Loss(noumbrellaif rain) = 5

In orderto makeadecision,weneed,in additionto thelossfunction,a decision rule. Themostobvious
andmostcommonrule is to minimizetheexpectedloss.Let

���
rain

�
bethe(Bayesian)probabilitythatit

will rain. Thenwe canwrite:

Expectedloss� umbrella
�w8�S(���

rain
�,+'8�Sh���

no rain
�x�;8

Expectedloss� no umbrella
�jyuS(���

rain
�,+�1�Sh���

no rain
�x�_yzS(���

rain
�

Theexpectedlossdependson theprobabilityof rain,andwith this lossfunctionit is minimizedif
you take anumbrellato work whenever theprobabilityof rain is morethan1/5.

An exampleof a different decisionrule is the minimaxrule which consistsin minimizing the
maximumloss.This rule doesnot requireknowing the(Bayesian)probabilityof rain andis thereforea
non-Bayesiandecisionrule. The minimaxdecisionin thepresentcasewould be to carry theumbrella
always,sincethemaximumlossis thenonly onepoint.

It canbeshown that for any non-Bayesiandecisionrule, thereis alwaysa Bayesianrule which is
asgoodor better(in thesensethatit leadsto nomorelossthanthenon-Bayesianrule).
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Sincethe lossfunctionis in generalsubjective, andin view of theresultthatno decisionrule can
bebetterthana Bayesiandecisionrule, it is naturalandreasonableto treatthewholedecisionprocess
within thedomainof Bayesianstatistics.
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