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1 Introduction

StrongConfidenceis a new methodfor settingfrequentistlimits that enjoys a large numberof good
properties[1], includingthatof beingfreefrom all thoseconceptualdifficultiesthathavebeenof concern
in theHEPcommunityin pastfew years.Probablyits mostimportantcharacteristicis to complywith a
form of LikelihoodPrinciple,which is absolutelyuniqueto themethodandappearsto bethesourceof
all othergoodproperties,which includeinvarianceunderany changeof variable,bothin parameterand
observablespaces,andexclusionof emptyregionsin full generality.

It turnsout that therearefurther, previously undiscussed,difficult issuesin limit settingthatalso
receive significanthelpby adoptionof thestrongCL approach.In this reportI will analyzeseparately
two of them:

� Paradoxicallossof sensitivity of anexperimentwith theadditionof moredata.� Difficulty in accountingfor systematicuncertaintiesin acoherentfrequentistway.

2 The problem of paradoxical sensitivity

It is well known thatConfidenceLimits calculatedwith theLR-orderingmethodin thePoissonproblem
with backgroundbecomeworse, for a fixed observed numberof counts,when the backgroundlevel
is reduced. Therehasbeena lot of debateaboutthe acceptabilityof this from the physicspoint of
view[2, 3, 4]. WhatI presenthereis asimpleproblemwhereavaguelysimilardifficulty is met,but much
moresevere,takingtheaspectof a realparadox.This is asituationwhereaddingthemeasurementof an
extravariableto anexperimentcausesadrasticworseningof thelimits. To fully appreciatetheparadox,
it is important to note that this worseningoccurswhatever the resultsof the additionally performed
measurement(thereis of coursenothingunusualaboutthe limit worseningonly in thecasewherethe
measurementhasaparticularoutcome).

2.1 A simple example

Supposeonewantsto checkthe pedestallevel of the outputof an analogdevice, affectedby gaussian
noise.Thismeanswehavesomeanalogsignalwhosevalue � canbesampled,andwhichfluctuatesfrom
measurementto measurementaccordingto agaussiandistributionwith anunknown mean� andaknown
standarddeviation � . Let’sassumethattherangeof � is constrainedby physicalreasonsto � �����	��
��� .

In order to checkfor deviations of � from zero, a very simple measurementis performedby
comparing� to a fixed threshold,set,say, at ����
��� . Therefore,a measurementhasonly two possible
outcomes,andthe(discrete)pdf for this experimentis givensimply by thevaluesof two gaussianinte-
grals,dependingontheunknown parameter� . Wewish to setlimits at90%CL on � , basedontheresult
of a singlemeasurementof this kind.

It is easyto checkthat the probability of obtainingan above–thresholdresult is alwayssmaller
than10%,whatever thevalueof � within its allowedrange.This is a typicalsituationwhere,if oneuses
theusualprobabilityordering(PO)rule,theresultis anemptyconfidenceregionfor theabove–threshold
result.

It is interestingto observe thatin thisproblemthereis nowayto getrid of theemptyregion result
withoutovercoveringto someextent,sothetwo requirements,oftenmentionedasdesirable,of ‘no empty
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regions’and‘minimal overcoverage’arein unavoidableconflict. TheLikelihoodRatio(LR) ordering[2]
choosesto allow someovercoverageandgetsrid of theemptyregion,thusproducingafinite interval (see
fig. 1 a))1. Fromthefigure,it is immediatelyapparentthatasmallregionat theendof parameterrangeis
now includedin theconfidenceband,becausetheretheLR valuefor theabove–thresholdobservation is
therelargerthanit is for thebelow–thresholdobservation.Theresultis then ��
���������������
��� 90%CL;
again,no valueof � getsexcludedif thethresholdis notpassed.

This resultmaysounda bit counterintuitive, becauseit is a very tight limit (excludes99%of the
rangeof the variable)from very limited information,especiallyif oneconsidersthat the likelihoodof
makinganabove–thresholdobservation is not sosharplydependenton � . But let’s investigatetheeffect
of addingsomeextra information. Supposethat, to gathermoreinformationwe adda comparisonto a
secondthreshold,setto ����� . Now, for the � valuesfalling below thepreviousthreshold,wealsogetto
know whetherthey fall in �! #"%$&�(' , or � ��$)��
���*' . Of course,nothingmoreis learnedfor above–threshold
outcomes.

Whatis theeffectof thisadditionalinformationontheconfidencelimits? Sinceneitherprobability
exceeds0.9 for any � , it meansthatwhenthe ��
��� thresholdis not passed,we still cannotexcludeany
value of � , whetherthe 0 thresholdis passedor not, so nothing is gainedcomparedto the previous
situation.What if thehigh thresholdis passed? It is very naturalto expectthatnothingshouldchange
here,sinceonealreadyknows thatthesignalwaspositive.

Surprisingly, theresultnotonly changes,but it becomesdramaticallylooser(andcloserto intuitive
expectations)asa consequenceof the additionalcomparisonwith zero. This appearsclearly from the
plot of theupdatedLR functions(fig. 1 b)): they now intersectat muchlower valuesthanbefore. The
answeris now:

��
��+��,������
�
Therefore,theallowed region for the parameteris now 44% of its full range,to be comparedwith the
previously obtained1%.

The result is worth somethought. We canthink of the experimentin the following alternative
way: wecheckthefirst threshold,andthenonly if thesignalfalls belowweperformtheadditionalcheck
againstzero. This is completelyequivalent, sincein the other casethe sign is alreadyknown. This
meansthat theconclusionwe shoulddraw from observingtheabove–thresholdresultdependsstrongly
on somethingwe would have donein the hypotheticalcasethat we hadobtaineda differentresult. In
otherwords,it dependsonwhetheroneperformanadditionalmesurementwhoseresultis a-prioriknown.
Notethat thereis no reasonto expectthis kind of behavior to bespecificallycausedby LR ordering:it
is easyto imaginethat,givenanymethodfor settinglimits basedonanorderingalgorithm, onecanfind
somemeasurementthat,by modifying thepdfonly for otherpossibleresults,producesaperturbationof
theorderingcapableof drasticallychangingthefinal result.

This is justaconsequenceof thewell known factthatfrequentistresultsmaydependonthechoice
of the‘ensemble’,but is a prettyweird onefrom a physicist’s viewpoint; notethat thereis no “stopping
rule” involved. It means,for instance,thatanexperimentalresultcanbemadeweaker by the fact that,
if it hadobtainedadifferentresult,someotherexperimentwouldperformsomeadditionalmeasurement
in future.All this is undoubtedly‘correct’ from a formalpoint of view, but is certainlyprettyconfusing.

I think it is importantto clarify herewhy oneshouldworry aboutthis kind of issues.It is some-
timessaidthatconfusionariseswhenonetries to give frequentistresultsa Bayesianmeaning,because
frequentistlimits arenot probabilitystatementsabouttheparameter. However, I don’t think thatobser-
vationaddressesthe realquestionin situationslike this one,which is of a muchmorepracticalnature:
thequestionis aboutthevalueof limits with suchstrangepropertiesin scientificcommunication.I be-

1It is interestingto notethat it is possiblefor theupperLR curve to beexactly flat, e.g. whenthedistribution is flat rather
than gaussianand thereare two symmetricallyplacedthresholds. In that casethe confidenceinterval is empty for P– and
LR–orderingalike
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Fig. 1: Likelihoodratio functionsfor theproblemdescribedin thetext: a) with a singlethresholdb) with two thresholds.The

probabilityof passingthehigherthresholdis alwayslower than90%;thereforetheLR–orderingmethodputsin theconfidence

region only thevaluesof - for which theLR of this resultis greaterthantheLR for at leastoneotherresult(theregionsat the

right of theverticalline)

lieve theright motivationfor trying to getrid of ‘paradoxes’ in limit settingshouldnot beto make them
look morelike p(hypothesis� data),but to ensurethey correctlyandeffectively convey the information
contentof theexperiment.It is quiteclear, for instance,thatquotingan ‘empty region’ (or a statement
that the experimentproduceda result incompatiblewith its sensitivity) conveys almostno information
to the reader, while in mostcasesit is intuitively obvious that the experimentdid containsomeuseful
information,thatgetswasted.Similarly, in theabove example,it is hardto considera resultsensitive to
irrelevantotherdataasaneffective summaryof theinformationcontentof theexperiment.

It is interestingto notethat this kind of difficulty is avoided,completelyandfrom the start,by
thestrongconfidence(sCL) approach.Theprincipleappliedto derive sCL forbidsby construction,and
in full generality, deriving a conclusionfor someparticularoccurrenceof themeasurementthatmaybe
invalidatedby detailsof the measurementrelatedto casesthat have not occurred[1]. In the particular
problemabove, thestrongconfidencelimit turnsout to be  .��
/(�0�1�2�3��
��� for theabove–threshold
observation, independentlyof thepresenceof otheradditionalmeasurements.

3 Limits in presence of systematic uncertainties

A very commoncomplicationin limit settingin HEPis the inclusionof systematicuncertaintiesin the
result. Therearevariouswaysto do it on the market, but for the vastmajority they deviate from the
frequentistapproachthatis implicit in theadoptionof ConfidenceLevel asbasisfor settinglimits.

I wish to argueherein favor of a fully frequentistsolutionof the problemof inclusionof sys-
tematics.I will thenalsodiscussthespecificadvantageof adoptingthemethodof strongconfidencein
calculatinglimits with systematics.

For thesakeof clarity, I define“systematicuncertainty”astheuncertaintyontheparameter� that
is causedby incompleteknowledgeof thepdf: 4657�98:�9; , which is therelationshipbetweentheprobability
distribution of ourobservables� andthevalueof theunknown � . This is to becontrastedwith thewell-
known conceptof “statisticaluncertainty”,which is theuncertaintyon thevalueof � inferredfrom one
or moreobservation of theobservables � , undertheassumptionthat thedistribution 4657�<8:�9; is exactly
known with infinite precision.

Onecanparametrizetheuncertaintyin thepdf via anadditionalsetof parameters= (“systematic
parameters”),suchthattheuncertainfunction 4657�98:�9; canberewrittenasa“perfectlyknown” 4>57�<8:�?$)=@; ,
containingtheadditionalunknown parameters= .

In somecases,theobservables � may containsufficient informationto determineboth � and = ,
but morefrequentlythereis no way to infer anything on � without someexternalinformationaboutthe
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valuesof the = . It is importantto remarkthat,underthe frequentistview, this informationcannottake
the form of a “probability distribution” of theunknown = (by definition, they have a singletruevalue,
which is unknown). Rather, onemayhave eithera rangeof allowedvaluesfor theparameter(e.g. from
theoreticalcalculations)or aseparatemeasurementof anotherobservable(say, A ) whosepdfdependson
= .

This additional information is easily incorporatedin the problemby consideringa more com-
prehensive pdf: 465:57�<$:AB;C8D57�?$)=@;:; , giving the joint probability of observingthe value of the “physics
observables” � plusall “systematicmeasurements”A , givenall unknown parameters,physicsandsys-
tematics. If the additionalmeasurementsA are independentof � , this new 4FEHG is simply given by a
product: 4>5:57�<$:AB;C8D57�?$)=@;:;I��4657�<8:�?$)=F;>JLKM57AF8)=@; , but in generalthis neednot bethecase.It is usefulto
keepin mind thatcommonexpressionslike: “the systematicparameter= hasa gaussianuncertainty”in
thefrequentistframework actuallymean:“we haveavailablethemeasuredvalueof anobservable A , that
hasagaussiandistribution centredon = ”.

Fromthe 4>5:57�<$:AB;C8D57�?$)=@;:; onecanthenderive ConfidenceLimits on the 57�?$)=@; pair from theob-
served valuesof 57�<$:AB; , in any standardway. In fact, Neyman’s constructionfor limits[5] is directly
applicablefor any numberof dimensionsin theobservableandparameterspaces:onebasicallysamples
agreatnumberof pointsin theparameterspaceandcheckscoveragefor eachof them.If theinformation
on someof the = parameterswasgiven in the form of a range,it comesinto play at this point simply
asanadditionalboundaryof thespace,which usuallyhastheconsequenceof limiting theextentof the
confidenceregionalsoin thedirectionof the � axis.

After having donethat,in orderto quoteresultscontainingonly thephysicalparameter, onemust
simply take thefinal stepof projectingtheconfidenceregion in the 57�?$)=F; ontothe � space.

Theprocedureoutlinedabove hasseveralsignificantadvantagesover othermethodscurrentlyon
themarket.� Consistency: thevalueof ConfidenceLimits is in their adherenceto frequentistprinciples;con-

taminationwith othermethodscreatesresultsthatmayundercoverandhavenoeasyinterpretation,
andarethereforemuchlessuseful.� Stability: the frequentistprocedureis free from divergencies,in contrastto Bayesianlimit ex-
tractionthatmayneedspecialproceduresto dealwith integralsof improperpriors,andthengive
resultsthat stronglydependon the specificchoiceof prior (see[7] for a cleardiscussionof this
issuefrom aBayesionviewpoint)� Intuitive behavior: sincetheresultis achievedby projection,anincreasein systematicuncertainty
tendto producelooserlimits2. Thisisnotalwaystrue,for instance,whenusingasmearingmethod.
Justto giveasimpleexample,if oneintroducesin theproblemdescribedin theprevioussectiona
flat systematicuncertaintyon thepositionof thethresholdat zeroby NPOQ� , thesmearingmethod
producesa tighter, ratherthanlooserlimit ( ��R���
����� in placeof theprevious ��R���
��+S� )
Giventheclearadvantagesandtheconceptualsimplicity of theexactprocedure,onemayaskwhy

a needhasbeenfelt for any othermethods;in fact, this is well motivatedby someimportantpractical
difficulties:

� Numericalcalculation:theproblemof calculatingCRsin multi-dimensionalspacesasastart,can
bevery complex andCPU-consuming� Projectingon the � spaceeffectively enlargesa possiblylimited region in 57�?$)=@; to a band.This
meansthat the quotedresultovercovers, sometimesbadly, especiallywhenthe spacehasmany
dimensions.� Connectedto the above problemis the issueof choosingthe orderingalgorithm for the band
construction.Themultidimensionalitypotentiallyleadsto a muchgreatersensitivity of theresult

2A rigoroustreatmentof this point, which is muchmoresubtlethanit appears,requiresanextensive discussionwhich is
beyondthescopeof thecurrentwork. I thereforementionit hereat theintuitive level.
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to theparticulalchoiceof ordering.Hereonenaturallywishesto makeachoicethatminimisesthe
overcoverage(seeprevious point), but theneedto do that in many dimensions,andthedesireto
avoid undesirableresults(emptyregions,andthelike)makesthisaverycomplicatedmathematical
problem. As a matterof fact, thereis currentlyno methodon themarket for settingConfidence
Limits allowing you to treatasetof parameters( � ) in adifferentway from otherparameters( = ).

All above difficulties,however, canbeovercome.

Theproblemof CPUneededto build theinitial confidencebandis real,but it is becominglessand
lessimportantwith the steadyimprovementof computingtechnology, especiallywhenit is compared
with the amountof computingthat is usedto producethedataitself, that is generallymuchlarger. In
many cases,it is not necessaryto samplethespaceof systematicparameterswith thesamegranularity
usedon the physicalparameters,but a much coarsersamplingis sufficient, as most of the time the
dependency of the resulton thesystematicparametersis reasonablysimple. In practice,applicationof
this techniqueto real,complex experimentsin HEPhasalreadyprovensuccessful[6].

About theissueof overcoverage,it is importantto look at it from theright perpective; it will then
reveal itself asessentiallya falseproblem.Overcoveragehereis producedby our intentionaldiscarding
the informationreturnedaboutthenuisanceparameters,becausewe do not careaboutthem; it is then
naturalthatthediscardedinformationcannotbetradedfor additionalinformationon thephysicsparam-
eters(at leastnot completely),so a certainamountof overcoverageis unavoidable,andshouldnot be
construedasa weaknessof themethod.While overcoverageis likely to occurto someextent, the real
questionis whetherany choiceof shorter� intervals exists thatdoesnot undercover. Theanswermay
well beno, sotheissueof how muchovercoverageis presentbecomesimmaterial,just asit happensin
many problemswith discreteobservables.

The issueof theoptimalchoiceof theband,by orderingor othermeans,is clearly relatedto the
above, andis obviously a difficult one.This is however a problemin general,evenif it maybeparticu-
larly felt in many dimensions.Notethat thedesirefor theminimal possibleovercoverageis sometimes
in directconflictwith therequestfor thelimits to benon–emptyandphysicallysensible,asdemonstrated
by thesimpleexamplediscussedin theprevioussection.Only in very simplecasesanoptimalsolution
appearsspontaneously:oneexamplefound in mostbooksis themultinormaldistribution of correlated
observablesdependingon anequalnumberof real,unboundedparameters,with constantsigma.In that
case,it is easyto seethata‘reasonable’solutionexistswith noovercoverage,madeof simplestripespar-
allel to thesystematicparameteraxis.NotethatthissolutionfollowsneitherP-ordering,or LR-ordering,
andits simplicity hidesthedifficulty of theproblemin thegeneralcase.Somechoicesof constructions
aremorepracticalthanothers:it turnsout thatthestrongconfidenceconstruction(discussedbriefly be-
low) givesa substantialhelp,by makingit relatively easyto calculate‘optimal’ limits with systematics
included,whicharefreefrom paradoxes.

3.1 Advantage of choosing a strong band when dealing with systematics

Theform of thestrongrequirement[1] leadsimmediatelyto thefollowing equationfor theprojectionof
amultidimensionalbandon the � space:

T � TFU�V
W&XMYZ 4657� V �\[ U $&]#^*57�_;a`b �?8:�?$)c>;

W&XMY^ W)XMYZ 4657� V �\[ U 8:�?$)c6; d OL fe(gih.
 (1)

This meansthat it is not necessaryto constructexplicitly a multidimensionalconfidenceregion;
thepresenceof systematicsonly requiresthemaximizationof theintegralsto beperformedin thelarger
space.In addition,the greatlevel of safetyprovided by the strongconfidencerequirementallows one
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to choosetheorderingalgorithmto useby concentratingon gettingthetightestpossiblelimits, without
having to worry aboutpossibleparadoxes.It hasbeenobservedthatthemostnaturalorderingalgorithm
to usein building a strongbandis theLR, asit preservesits goodinvarianceproperties[1]. Theform of
eq.1 suggestsa naturalextensionof LR–orderingto themultidimensionalcase,that is the ratio of the
profile Likelihoods:

hkj#lnmporq?�
W&XMYZ 4>57�<8:�?$)c>;

W&XMY^ W&XBYZ 4657�<8:�?$)c>; (2)

By orderingpointsaccordingto this rule, theconfidencebandgets“stretched”alongthedirection
of the physicalparameter. This orderingalgorithm,in conjunctionwith eq.1 that is neededasa pro-
tectionfrom unphysicalor paradoxicalresults,thenproducesthenarrowestlimits within thestrongCL
prescription,with exactfrequentisttreatmentof systematicuncertainties. Thismethodhasproveditself
practicallyusefulin theanalysisof realneutrinoexperiments[6].
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