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1 Introduction

StrongConfidenceis a nev methodfor settingfrequentistlimits that enjoys a large numberof good
properties[}, includingthatof beingfreefrom all thoseconceptuadifficultiesthathave beenof concern
in the HEP communityin pastfew years.Probablyits mostimportantcharacteristias to complywith a
form of LikelihoodPrinciple,which is absolutelyuniqueto the methodandappeardo be the sourceof
all othergoodpropertieswhich includeinvarianceunderary changeof variable,bothin parameteand
obserablespacesandexclusionof emptyregionsin full generality

It turnsout thattherearefurther, previously undiscussedifficult issuesn limit settingthatalso
receve significanthelp by adoptionof the strongCL approach.In this reportl will analyzeseparately
two of them:

e Paradoxicalossof sensitvity of anexperimentwith theadditionof moredata.
¢ Difficulty in accountingor systematiaincertaintiesn a coherenfrequentistway.

2 Theproblem of paradoxical sensitivity

It is well known thatConfidence.imits calculatedwith the LR-orderingmethodin the Poissorproblem
with backgroundbecomeworse, for a fixed obsered numberof counts,whenthe backgroundevel

is reduced. Therehasbeena lot of debateaboutthe acceptabilityof this from the physicspoint of

view[2, 3, 4]. Whatl presentereis asimpleproblemwhereavaguelysimilar difficulty is met,but much
moresevere,takingtheaspecbf areal paradox.Thisis asituationwhereaddingthe measuremerdf an
extra variableto anexperimentcauses drasticworseningof thelimits. To fully appreciatehe paradox,
it is importantto note that this worseningoccurswhatever the resultsof the additionally performed
measuremen(thereis of coursenothingunusualaboutthe limit worseningonly in the casewherethe
measuremerftasa particularoutcome).

2.1 A simpleexample

Supposenewantsto checkthe pedestalevel of the outputof ananalogdevice, affectedby gaussian
noise.This meansve have someanalogsignalwhosevaluex canbesampledandwhichfluctuatesrom
measuremertb measuremeraccordingo agaussiamlistribution with anunknavn meanu andaknown
standarddeviation o. Let’'s assumehattherangeof y is constrainedy physicalreasongo |u| < 0.50.

In orderto checkfor deviations of u from zero, a very simple measuremenis performedby
comparingz to afixedthresholdset,say at +2.5¢0. Therefore,a measuremertiasonly two possible
outcomesandthe (discrete)pdf for this experimentis given simply by the valuesof two gaussiannte-
grals,dependingntheunknavn parametey. We wishto setlimits at90%CL on u, basedntheresult
of asinglemeasurementf this kind.

It is easyto checkthat the probability of obtainingan abore—thresholdesultis alwayssmaller
than10%,whatever thevalueof x within its allowedrange.Thisis atypical situationwhere,if oneuses
theusualprobabilityordering(PO)rule, theresultis anemptyconfidenceegion for theabove—threshold
result.

It is interestingto obsene thatin this problemthereis nowayto getrid of theemptyregion result
withoutovercoveringto someextent,sothetwo requirementspftenmentionedasdesirablepf ‘no empty
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regions’ and‘minimal overcoverage’arein unavoidableconflict. TheLikelihoodRatio (LR) ordering[3

chooseso allow someovercarerageandgetsrid of theemptyregion, thusproducingafinite intenal (see
fig. 1 a))t. Fromthefigure,it isimmediatelyapparenthata smallregion attheendof parameterangeis
now includedin the confidencéband,becauseherethe LR valuefor the abore—thresholdbsenrationis
therelargerthanit is for the belov—thresholdbbseration. Theresultis then0.495 < p < 0.5@ 90%CL;
again,no valueof y getsexcludedif thethresholds notpassed.

This resultmay sounda bit counterintuitve, becauset is a very tight limit (excludes99% of the
rangeof the variable)from very limited information, especiallyif one considerghatthe likelihood of
makinganabose—thresholdbsenationis not sosharplydependenon .. But let’s investigatethe effect
of addingsomeextra information. Supposehat, to gathermoreinformationwe adda comparisorto a
secondhresholdsetto z = 0. Now, for thez valuesfalling belav the previousthresholdwe alsogetto
know whetherthey fall in [—o0, 0], or [0, 2.50]. Of course nothingmoreis learnedfor abore—threshold
outcomes.

Whatis theeffectof thisadditionalinformationon theconfidencdimits? Sinceneitherprobability
exceedd).9for ary u, it meanghatwhenthe 2.5¢ thresholdis not passedyve still cannotexcludeary
value of 1, whetherthe 0 thresholdis passedor not, so nothingis gainedcomparedo the previous
situation. Whatif the high thresholdis passe It is very naturalto expectthat nothingshouldchange
here,sinceonealreadyknows thatthe signalwaspositive.

Surprisingly theresultnotonly changeshut it becomesiramaticallooser(andcloserto intuitive
expectationslasa consequencef the additionalcomparisorwith zero. This appearslearly from the
plot of the updatedLR functions(fig. 1 b)): they now intersectat muchlower valuesthanbefore. The
answeris now:

027 < pu<0.5

Therefore the allowed region for the parameteis nowv 44% of its full range,to be comparedwith the
previously obtainedl%.

The resultis worth somethought. We canthink of the experimentin the following alternatve
way: we checkthefirst thresholdandthenonlyif thesignalfalls belowwe performtheadditionalcheck
againstzero. This is completelyequivalent, sincein the other casethe signis alreadyknown. This
meanghatthe conclusionwe shoulddrav from observingthe abore—thresholdesultdependstrongly
on somethingwe would have donein the hypotheticalcasethat we had obtaineda differentresult. In
otherwords,it dependenwhetheroneperformanadditionalmesuremenwhoseresultis a-prioriknown.
Note thatthereis no reasorto expectthis kind of behaior to be specificallycauseddy LR ordering:it
is easyto imaginethat,givenany methodfor settinglimits basedon an orderingalgorithm onecanfind
somemeasuremerthat, by modifying the pdf only for otherpossibleresults producesa perturbatiorof
the orderingcapableof drasticallychanginghefinal result.

Thisis justaconsequencef thewell knowvn factthatfrequentistresultsmaydependnthechoice
of the‘ensemble’ but is a prettyweird onefrom a physicists viewpoint; notethatthereis no “stopping
rule” involved. It meansfor instancethatan experimentalresultcanbe madewealer by the factthat,
if it hadobtaineda differentresult,someotherexperimentwould performsomeadditionalmeasurement
in future. All thisis undoubtedlycorrect’ from aformal pointof view, but is certainlypretty confusing.

| think it is importantto clarify herewhy oneshouldworry aboutthis kind of issues.It is some-
timessaidthat confusionariseswhenonetriesto give frequentistresultsa Bayesiarmeaning because
frequentistimits arenot probability statementaboutthe parameterHowever, | don't think thatobser
vation addressethe real questionin situationslike this one,which is of a muchmorepracticalnature:
the questionis aboutthe valueof limits with suchstrangepropertiesn scientificcommunication.| be-

11t is interestingto notethatit is possiblefor the upperLR curve to be exactly flat, e.g. whenthe distribution is flat rather
than gaussiarandthereare two symmetricallyplacedthresholds. In that casethe confidenceinterval is empty for P—and
LR—orderingalike
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Fig. 1: Likelihoodratio functionsfor the problemdescribedn thetext: a) with a singlethresholdb) with two thresholdsThe
probability of passinghehigherthresholds alwayslowerthan90%;thereforethe LR—orderingmethodputsin the confidence
region only thevaluesof p for whichtheLR of thisresultis greaterthanthe LR for atleastoneotherresult(theregionsatthe
right of theverticalline)

lieve theright motivationfor trying to getrid of ‘paradoxs’ in limit settingshouldnot beto make them
look morelike p(hypothesiglata), but to ensurethey correctlyand effectively corvey the information
contentof the experiment. It is quite clear for instancethatquotingan ‘empty region’ (or a statement
thatthe experimentproduceda resultincompatiblewith its sensitvity) corveys almostno information
to the reader while in mostcasest is intuitively obvious thatthe experimentdid containsomeuseful
information,thatgetswasted.Similarly, in theabose example,it is hardto consideraresultsensitve to
irrelevantotherdataasan effective summaryof theinformationcontentof the experiment.

It is interestingto note that this kind of difficulty is avoided, completelyand from the start, by
the strongconfidencgsCL) approach.The principle appliedto derive sCL forbids by constructionand
in full generality deriving a conclusionfor someparticularoccurrencef the measuremerthatmay be
invalidatedby detailsof the measuremenitelatedto caseshat have not occurred[1. In the particular
problemabove, the strongconfidencdimit turnsoutto be —0.34 < p < 0.50 for the abore—threshold
obsenration,independentlpf the presencef otheradditionalmeasurements.

3 Limitsin presence of systematic uncertainties

A very commoncomplicationin limit settingin HEP is the inclusionof systematiaincertaintiesn the
result. Therearevariouswaysto do it on the market, but for the vast majority they deviate from the
frequentistapproactthatis implicit in theadoptionof Confidencd_evel asbasisfor settinglimits.

I wish to amgue herein favor of a fully frequentistsolution of the problemof inclusion of sys-
tematics.l will thenalsodiscusghe specificadvantageof adoptingthe methodof strongconfidencen
calculatinglimits with systematics.

For thesale of clarity, | define“systematicuncertainty”asthe uncertaintyonthe parametey that
is causedy incompleteknowledgeof thepdf p(z; 1), whichis therelationshipbetweerthe probability
distribution of our obserablesz andthevalueof theunknavn y. Thisis to becontrastedvith thewell-
known concepiof “statisticaluncertainty”,which is the uncertaintyon the valueof u inferredfrom one
or moreobsenation of the obserablesz, underthe assumptiorthat the distribution p(z; i) is exactly
known with infinite precision.

Onecanparametrizehe uncertaintyin the pdf via anadditionalsetof parameters (“systematic
parameters”)suchthattheuncertairfunctionp(z; 1) canberewritten asa“perfectly known” p(z; u, v),
containingtheadditionalunknavn parameters.

In somecasesthe obserablesz may containsuficient informationto determineboth ;4 andv,
but morefrequentlythereis no way to infer arything on . without someexternalinformationaboutthe
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valuesof thev. It is importantto remarkthat, underthe frequentistview, this informationcannottake
the form of a “probability distribution” of the unknawvn v (by definition, they have a singletrue value,
whichis unknavn). Rathey onemay have eithera rangeof allowed valuesfor the paramete(e.g. from
theoreticakalculationspr a separateneasuremenidf anothembserable(say y) whosepdf dependon
V.

This additionalinformationis easily incorporatedn the problemby consideringa more com-
prehensie pdf p((z,v); (1, v)), giving the joint probability of observingthe value of the “physics
obserables”z plusall “systematicmeasurementsjj , givenall unknavn parametersphysicsandsys-
tematics. If the additionalmeasurementg are independendf p, this new pdf is simply given by a
product:p((z,y); (u,v)) = p(x; u,v) * q(y; v), butin generalthis neednot be the case.It is usefulto
keepin mind thatcommonexpressiondike: “the systematigparameter hasa gaussiaruncertainty”in
thefrequentisframavork actuallymean:“we have availablethe measuredalueof anobserabley, that
hasa gaussiardistribution centredon v”.

Fromthep((z,y); (4, v)) onecanthenderive Confidence.imits on the (u, v) pair from the ob-
sened valuesof (z,y), in ary standardway. In fact, Neymans constructionfor limits[5] is directly
applicablefor any numberof dimensiongn the obserableandparametespacesonebasicallysamples
agreatnumberof pointsin theparametespaceandcheckscoveragefor eachof them.If theinformation
on someof the v parametersvasgiven in the form of a range,it comesinto play at this point simply
asan additionalboundaryof the spacewhich usuallyhasthe consequencef limiting the extentof the
confidencaegion alsoin thedirectionof the i axis.

After having donethat,in orderto quoteresultscontainingonly the physicalparameteronemust
simply take thefinal stepof projectingthe confidenceegionin the (i, ) ontothe i, space.

The procedureputlinedaborve hasseveral significantadwantagesover othermethodscurrentlyon
themarlet.

e Consisteng. thevalueof Confidencelimits is in their adherenceo frequentistprinciples;con-
taminationwith othermethod<reatesesultsthatmayunderceer andhave no easyinterpretation,
andarethereforemuchlessuseful.

e Stability: the frequentistprocedureis free from divergencies,in contrastto Bayesianlimit ex-
tractionthatmay needspecialprocedureso dealwith integralsof improperpriors,andthengive
resultsthat strongly dependon the specificchoiceof prior (see[7] for a cleardiscussiorof this
issuefrom a Bayesionviewpoint)

¢ Intuitive behaior: sincetheresultis achiezed by projection,anincreasen systematiancertainty
tendto producdooserimits?. Thisis notalwaystrue,for instanceyvhenusingasmearingnethod.
Justto give a simpleexample,if oneintroducesdn the problemdescribedn the previous sectiona
flat systematiaincertaintyon the positionof the thresholdat zeroby +1¢, the smearingmethod
producesatighter, ratherthanlooserlimit (4 > 0.292 in placeof thepreviousy > 0.274)

Giventheclearadwantagesndtheconceptuasimplicity of theexactprocedurepnemayaskwhy
a needhasbeenfelt for any othermethods;in fact, this is well motivatedby someimportantpractical
difficulties:

¢ Numericalcalculation:the problemof calculatingCRsin multi-dimensionakpacessa start,can
bevery complex andCPU-consuming

e Projectingon the 1 spaceeffectively enlagesa possiblylimited regionin (u,v) to a band. This
meansthat the quotedresultovercovers, sometimesadly especiallywhenthe spacehasmary
dimensions.

e Connectedo the abore problemis the issueof choosingthe orderingalgorithm for the band
construction.The multidimensionalitypotentiallyleadsto a muchgreatersensitvity of the result

2A rigoroustreatmenif this point, which is muchmoresubtlethanit appearsrequiresan extensie discussiorwhich is
beyondthe scopeof the currentwork. | thereforementionit hereattheintuitive level.
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to theparticulalchoiceof ordering.Hereonenaturallywishesto make a choicethatminimisesthe
overcoverage(seeprevious point), but the needto do thatin mary dimensionsandthe desireto
avoid undesirableesults(emptyregions,andthelik e) makesthisavery complicatednathematical
problem. As a matterof fact, thereis currentlyno methodon the market for settingConfidence
Limits allowing you to treata setof parametergu) in a differentway from otherparametergv).

All abore difficulties, however, canbe overcome.

Theproblemof CPUneededo build theinitial confidencebandis real,but it is becomingessand
lessimportantwith the steadyimprovementof computingtechnology especiallywhenit is compared
with the amountof computingthatis usedto producethe dataitself, thatis generallymuchlarger In
mary casesit is not necessaryo samplethe spaceof systematiqgparametersvith the samegranularity
usedon the physical parametersbut a much coarsersamplingis suficient, as most of the time the
dependengcof theresulton the systematigparameterss reasonablysimple. In practice,applicationof
thistechniqueto real,comple experimentdn HEP hasalreadyprovensuccessful[p

Abouttheissueof overcorerageijt is importantto look atit from theright perpectie; it will then
revealitself asessentiallya falseproblem.Overcoreragehereis producedoy our intentionaldiscarding
the informationreturnedaboutthe nuisanceparametershbecausave do not careaboutthem;it is then
naturalthatthe discardednformationcannotbetradedfor additionalinformationon the physicsparam-
eters(at leastnot completely),so a certainamountof overcoverageis unavoidable,and shouldnot be
construedasa weaknes®f the method. While overcoverageis likely to occurto someextent, the real
guestionis whetherary choiceof shortery intervals existsthatdoesnot undecover. The answemay
well beno, sotheissueof how muchovercorerageis presenbecomesmmaterial,just asit happensn
mary problemswith discreteobserables.

Theissueof the optimal choiceof the band,by orderingor othermeansjs clearly relatedto the
above, andis obviously a difficult one. This is however a problemin general gvenif it may be particu-
larly felt in mary dimensions.Note thatthe desirefor the minimal possibleovercoserageis sometimes
in directconflictwith therequesfor thelimits to benon—emptyandphysicallysensibleasdemonstrated
by the simpleexamplediscussedn the previous section.Only in very simplecasesanoptimal solution
appearspontaneouslyone examplefoundin mostbooksis the multinormaldistribution of correlated
obserablesdependingpn anequalnumberof real, unboundegarametersyith constansigma.in that
casejt is easyto seethata ‘reasonableSolutionexistswith no overcoserage madeof simplestripespar
allel to the systematiparameteaxis. Notethatthis solutionfollows neitherP-ordering or LR-ordering,
andits simplicity hidesthe difficulty of the problemin the generalcase.Somechoicesof constructions
aremorepracticalthanothers:it turnsout thatthe strongconfidenceconstruction(discussedbriefly be-
low) givesa substantiahelp, by makingit relatively easyto calculate'optimal’ limits with systematics
included,which arefreefrom parados.

3.1 Advantage of choosing a strong band when dealing with systematics

Theform of the strongrequirement[] leadsimmediatelyto the following equatiorfor the projectionof
amultidimensionabandonthe i space:

YuVy :

supp(z : z € X, Bu(z) F s 1, @)
o

supsupp(z : T € x; 4, @)
uwoo«

< 1-sCL. (1)

This meanghatit is not necessaryo constructexplicitly a multidimensionakonfidenceegion;
the presencef systematic®nly requiresthe maximizationof the integralsto be performedn thelarger
space.In addition,the greatlevel of safetyprovided by the strongconfidencerequirementllows one

26



to choosethe orderingalgorithmto useby concentratingn gettingthe tightestpossiblelimits, without
having to worry aboutpossibleparadogs. It hasbeenobseredthatthe mostnaturalorderingalgorithm
to usein building a strongbandis the LR, asit preseresits goodinvarianceproperties[] Theform of
eg. 1 suggests naturalextensionof LR—orderingto the multidimensionakase thatis the ratio of the
profile Likelihoods:

sup p(w; 4, @)

LRyt = @ - (2)
sup sup p(z; i1, @)
b«

By orderingpointsaccordingo this rule, the confidencebandgets“stretched”alongthedirection
of the physicalparameter This orderingalgorithm,in conjunctionwith eq.1 thatis neededasa pro-
tectionfrom unphysicalor paradoxicatesults,thenproduceghe narravestlimits within the strongCL
prescriptionwith exactfrequentistreatmenof systematiancertainties This methodhasproveditself
practicallyusefulin theanalysisof realneutrinoexperiments[§.
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