AN UNFOLDING METHOD FOR HIGH ENERGY PHYSICS
EXPERIMENTS

\olker Blobel
Institut fur ExperimentalphysikUniversitit Hamlurg, Germary

Abstract

Finite detectorresolutionandlimited acceptanceequireoneto apply unfold-
ing methodsn high enegy physicsexperiments.Informationon the detector
resolutionis usually given by a setof Monte Carlo events. Basedon the ex-
periencewith awidely usedunfolding program(RUN) a modifiedmethodhas
beendeveloped.

Thefirst stepof the methodis a maximumlikelihoodfit of the Monte Carlo
distributionsto the measuredlistribution in one,two or threedimensionsthe
finite statisticsof the Monte Carlo eventsis taken into accountby the useof
Barlon’s methodwith a new methodof solution. A clusteringmethodis used
beforecombiningbinsin sparselypopulatedareas.In the secondstepa regu-
larizationis appliedto the solution, which introducesonly a smallbias. The
regularizationparameteliis determinedirom the dataafter a diagonalization
androtationprocedure.

1 THE UNFOLDING PROBLEM

A standardaskin high enegy physicsexperimentss the measurementf a distribution f(z) of some
kinematicalquantityz. With anidealdetectoronecouldmeasurg¢he quantityz in every eventandcould
obtain f(x) by a simple histogramof the quantityz. With real detectorghe determinatiorof f(x) is
complicatedby threeeffects:

e Limited acceptance: The probability to obsere a given event, the detectoracceptanceis less
thanl. Theacceptancdepend®nthekinematicalvariablez.

e Transformation: Insteadof the quantityz a different, but relatedquantityy is measured.The
transformatiorfrom z to y canbe causedy thenon-linearresponsef a detectorcomponent.

¢ Finite resolution: The measuredjuantityy is smearedut dueto thefinite resolution(or limited
measuremerdccurag) of the detector Thusthereis only a statisticalrelationbetweerthe true
kinematicalvariablez andthe measuredjuantityy.

Thereally difficult effectin the datacorrectionfor experimentaleffects, or datatransformation
from y to z is thefinite resolution causinga smearingof the measuredjuantities.Mathematicallythe
relationbetweerthe distribution f (z) of thetruevariablez, to be determinedn anexperimentandthe
measurediistribution g(y) of the measuredjuantityy is givenby theintegral equation,

gy) = / Aly,)f (z) de |, 1)

calleda Fredholmintegral equationof thefirst kind. In practiceoftenaknowvn (measurear simulated)
backgroundtontritution b(y) hasto be addedto the right-handsideof equation(1); this contritution is
ignoredin this paper The resolutionfunction A(y, =) representshe effect of the detector For a given
valuex = z, thefunction A(y, =) describesheresponsef the detectorin the variabley for thatfixed
valuez,. The problemin determiningthe distribution f(z) from measuredlistributions g(y) is called
unfolding it is calledaninverseproblem.Unfolding of courserequiresthe knowledgeof the resolution
function A(y, ), i.e. all the effectsof limited acceptancedransformatiorandfinite resolution.
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In additionto the imperfectionsof the detectoy theremay be further effects betweenz andy,
which are outsideof the experimentalcontiol, even with anideal detector One exampleareradiatve
effects,whichin experimentsareoftencorrectedafterwards(radiativecorrections) but arein their effect
similar to detectoreffects. If the true kinematicalquantityis definedat the partonlevel, further effects
from the fragmentatiorprocessof partonsto the (obserable) hadronsnfluencethe measuredjuantity
y. All theseeffectsareof a statisticalnature.

measured histogram and original distribution
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200¢

Fig. 1: TheMonte Carlosimulationof the effectsof limited
acceptancetransformationand finite resolution. Shavn
is the original (true) distribution (line histogram)and the
“measureddistribution (yellow/shadechistogram).

A typical examplefor theseeffectsis shavn in Figure 1 taken from a Monte Carlo simulation
of all threeeffects. By unfolding, an estimateof the original distribution hasto be determinedirom
the distortedmeasurediistribution. Detailson the Monte Carlo simulationaregiven laterin Section3,
wheretheunfoldingin this exampleis discussedn detail.

For thenumericalsolutionof equation(1) thedistributionshave to berepresentedy afinite setof
parametersOneposssibilityis to representhe distributions by histogramsandthe resolutionfunction
by amatrix. Equation(1) canthenberepresentetly the matrix equation

’ @

which hasto be solved for the vector z, given the vectory (datahistogram). The vectory with n
elementgepresents histogramof the measuredjuantityy, andthe distribution f(z) is representethy
a histogramof the vectorz with m elements.The variablesy andz may be multidimensionalandthe
multidimensionahistogramscanbe mappedo n-bin () andm-bin histogramqy), respectiely. The
transitionfrom x to y is describedy then-by-m matrix A. Theelement;; is relatedto the probability
to obsere anentryin histogrambin ¢ of the histogramy, if thetrue valuez is from histogrambin j of
thehistograme. Problemswith standardsolutionsarediscussedhn the next section.

In high enegy physicsexperimentghe problemis even moredifficult thanin otherfields. Often
the statisticsof the measuremeris not high andevery y-bin content(which is distributedaccordingto
the Poissondistribution aroundthe expectedvalue) hasa large statisticalfluctuation. Furthermorethe
resolutionfunction A(z, y) (or the matrix A) is notknown analytically but is representetly a dataset
from Monte Carlosimulationof the processhbasedn someassumedlistribution fyc(z),

gvc(y) = /A(y,a:)ch(x) dz , (Monte Carlosimulation) (3)

andis alsostatisticallylimited. Standaranethodgor thesolutionof integral equation®r linearequations
cannotbe usedin this case.

A simplemethodlik e the so-calledbin-by-bincorrectionmay be meaningfulif themeasurements
y arevery closeto the true valuesz. Realunfoldingmethodstakingall the correlationsinto account,
areessentialf therearelarger effects of transformationandfinite resolution A solutionz hasto be
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found, with small deviations betweenthe elementsof Az andthe elementsof the actually measured
histogramy. In the maximumlikelihoodmethoda function F'(x) is constructedasthe negative log of
theLikelihoodfunction,which describedhe statisticalrelationsbetweerdataandresult:

F(z) = —log L(z,y, A) (4)

and the minimum of F(x) is determined. Wildly fluctuatingresultsz connectedo large (negative)
correlationsbetweenadjacentins arenot acceptableThe approacho geta morereasonableolution
is to imposea measureof the smoothnessn the resultz; this methodis calledregularization. This
techniquewas proposedndependenthyby Phillips [2] andby Thikhonor [3]. For a function f(z) the
integratedsquareof the seconddervative

o= [(H) « ®

is oftenusedin the regularizationwhich in the linearizedversionof the problemcanbe expressedy a
quadratidform C(z) = = Cz with a positive-semidefinitenatrix C' (derivativesarereplacedy finite
differences)Equation(4) is thenmodifiedto theform

F(x)=—logL(x,y,A)+7-C(x) (6)
with afactorr calledregularizationparameter

The resultof the minimization of the modifiedfunction F'(x) of equation(6) will shav smaller
fluctuationgthantheresultobtainedrom equation(4) andmaybe moreusefulto comparehe measure-
mentwith theoreticalpredictions. However it is clearthat unavoidably the regularizationintroducesa
bias. The magnitudeof the biasdepend®on the valueof regularizationparameter-. A very large value
would resultin alinear function f(z) or distribution , respectiely. It is clearthatthe methodrequires
ana-priori knowvledgeabouta smoothbehaiour of f(z). Thefunction fyc(z) usedin the Monte Carlo
simulationof equation(3) is oftenvery closeto thefinal resultf (), i.e. theratiois rathersmooth.This
suggestexpressingf (z) in theform f(z) = fuc(z) x fmut(z) andrewriting equation(1) in theform

g@zfmmwmwmmmmm. )

For the discretizedform the function fyc(z) canbe absorbedn a redefinitionof matrix A andthe
vector is interpretedasdiscretizatiornf the hopefully smoothfunction fyi(z). With this redefinition
the equation(2) canremainunchangedThe programRUN [4, 5] for regularizedunfoldingis available
for almosttwo decadesindhasbeenusedin mary experiments;early applicationsare[6] and[7]. It
is basedon the reinterpretatiorof matrix A and«, asdescribedabore, andincludesa methodfor the
determinatiorof theregularizationparameter basednthe availabledegreesof freedom.In themethod
describedaterin this papersomedetailsaretreateddifferently

2 UNFOLDING AS AN ILL-POSED PROBLEM

The problemsinherentto unfoldingarediscussedhn a simplespecialcase assuminga resolutionmatrix
A with somesmearingof datainto neighbourbins. Assuminga true vectorx the producty = Az
describeshedistribution expecteddueto the migrationeffect. With thesamedimensiondor thevectors
« andy the matrix A is a squarematrix andin the examplelaterin this sectionthe following simple
symmetricform is assumedor the matrix A, which depend=n a single parametee (¢ = migration
parameter)for a 5-by-5matrix theform is

1—¢ € 0 0 0
€ 1—2¢ € 0 0
A= 0 e 1-2 ¢ 0 (8)
0 0 € 1—2¢ €
0 0 0 € 1—¢
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A directsolutionfor @, givena measuremery differing from the expectationA«z with the true vector
x by statisticalfluctuationsjs possiblewith inversionof the matrix A:

1~

estimate z = A™'y errorpropagation V(z) = A™'V, (A‘l)T :

The result has certaingood statisticalproperties,for exampleit hasno bias: E[z] = A7'E[y] =

A7'AE [z] = . In practicethe resultis however satishctory only for a matrix A with dominating
diagonal;theresultlooksterribleif the matrix A describes large migrationto neighboutbins. Conse-
quentlytheproblemis calledanill-posedproblem.In thefollowing thesolutionof theequationy = Ax

usinganorthogonaldecompositiorns discussedthiswill allow someinsightinto theunfoldingproblem.

Thesymmetricmatrix A canbewrittenas
A=UDUT (9)

with a transformatiormatrix U with propertyU” U = 1, anda diagonalmatrix D, wherethe diagonal
elementsof matrix D arethe eigevalues); of matrix A (in the orderof decreasingalue). Thetrans-
formationmatrix U containgthe correspondingigevectorswith the eigevectoru; in the j-th column.
The conditionnumberx of amatrix is definedby theratio of eigevectorsk = Amax/ Amin; the valueof
k is importantfor the quality of unfolding (seebelav). For valuesabore ¢ = 0.20 the conditionnumber
K is veryrapidly increasing.
A transformatiorof equationy = Ax to a new basisis doneby multiplicationwith matrix U”

(whichis arotationin then-dimensionakpace):

u’. | y = Az=UDU"z.
Uy = DUz — c=Db.
' b
=C =

ThematrixU of eigervectorSuf allows oneto transformthe vectorsz andy to vectorsb = U” z and

¢ = UTy, andto transformthesevectorsbackby # = Ub andy = Uec. The transformedequation
¢ = Db with the diagonalmatrix D shaws, that eachof the coeficients b; andc; is transformed
independentlyf ary othercoeficientby thesimplerelationc; = A; -b;. Thisoperatiordoesnotdepend
on ary assumptiorof the solution z, and dependsonly on the propertiesof the matrix A. Folding

(x — y) andunfolding (y — z) is multiplication anddivision by the eigevalues);, respectrely, of

thecoeficientsin thetransformedspace.

In orderto unfold a measuredrectory, the vectoris transformedby ¢ = U7y to coeficients
c;, which have valuesinfluencedby statisticalfluctuationsof the elementsf vectory. In the unfolding
the coeficientsc; aredivided by the eigevalues); to obtainb; = c¢;/A;; the statisticalfluctuationof
coeficientc; is magnifiedfor smalleigevalues); (i.e. A\; < 1). Eventually for very smalleigevalues
Aj, the final resultz = Ub will be dominatedby one or by few of the coeficients b; with small
eigewvaluesandlarge statisticalerrors,andthe completeresultis unsatisfctory

Example. In anumericalexamplethe matrix A hastheform of equation(8) with n = 20 andavalueof
the migrationparameteof ¢ = 0.22. Thefirst eigevalueis A; = 1.0, andthelastoneis Agy = 1/7.9,
giving a conditionnumberx = 7.9. For « theidealdistribution of Figure2ais assumedthe underlying
functionis of the form z exp(—ax). The decompositiorof the matrix A accordingto equation(9) is
performedandthe coeficientsb; andc; arecalculated.Thesecoeficientsareshavn in Figure3a (with
b; > c;). In additionthis figure shavs, calculatedby standarderror propagationthe almostconstant
errorlevel of thecoeficients,of thefoldeddistribution of Figure2awith Poissordistributedbin contents.
Figure 3ashaws thatthe coeficientsb; of the true distribution decreaseapidly with increasingvalue j
of theindex of the coeficient, by roughly threeordersof magnitude.The coeficientsc; of thefolded
distribution dropevenfastey becausé is moresmoothdueto themigrationeffect. Of coursetherelation
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Fig. 2: Original (true) distribution (a) andtwo resultsfrom unfolding ((b) and(c)). Result(b) hasbeenobtainedfrom all 20
coeficients,andfor result(c) asharpcut-off after10 coeficientshasbeenapplied(i.e. thecoeficients11to 20 areignored).
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Fig. 3: The absolutevaluesof coeficientsb; andc; areshawn for j = 1, 2,...20. Thecoeficientsb; andc; for thetrue
distribution andthefoldeddistribution (without measuremergrrors)areshavn in (a), togethemwith the (almostconstanterror
estimatefor the coeficientsb; calulatedby error propagation.The coeficientsc; from the simulatedmeasurediistribution
areshavn in (b), togetherwith the error estimate.For j above 12 the smallercoeficients of the folded distribution become
smallerthanthe statisticalerror. In (b) the coeficientsfor j abose 12 aredominatedby statisticalerrorsandeventhe signis
notdeterminedy the data.

b;j/c; = Ajisvalid. Thelastcoeficientb; in Figure3ais reducedo c; by theinverseof the condition
numberof the matrix, whichis x = 7.9 in this case.

Thecomponentsf thefirst eigevectoru; (eigevalue= 1) areall thesame.Thusthecoeficients
b; andc; areidentical,andproportionalo thetotal sumof themeasurediistribution, notatall influenced
by themigration.If visualizedby functions,interpolatingthecomponentsheeigervectoru; (eigevalue
Aj) hasj — 1 zeros,andthe cunvatureof the visualizedeigervectorsis rapidly increasingwith index
j. The component®f the lasteigewvectoru,, have alternatingsignfor the bins; it hasa small absolute
valueandits measuredialuewill have alarge relative statisticalerror The value of by is obtainedby
bag = 7.9 - cop in unfolding,introducinga large bin-to-binoscillationinto the resultof unfolding.

In a simulation,Poissordistributed bin contentsareassumedn the measurementectory. The
coeficientsfor this measurediistribution areshavn in Figure3b, togethemwith thelevel of thestatistical
error As expectedfrom the size of the errors,all coeficientswith anindex above about; = 12 are
dominatedby the statisticalerrorandthereforedo notsignificantlycontrikute to theinformationcontent
of the measurement-or indicesabove 5 = 12 eventhesign of the coeficient cannotbe determinecdy
themeasurement.

Using all the “measured’coeficientsfor the unfolding, the resultof Figure2b is obtained.This
resultshavs large fluctuationsaroundthe expectedvaluesshavn by the curve. Thefluctuationsaredue
to thecontributionsfromindicesabove 3 = 12, whichrepresenhoiseandaremagnifiedin theunfolding
becausef thelarge valuesof their inverseeigevalues.Theresultis clearlyunsatisactory

Becausell measuredoeficientsc; with j above avalueof 12 aredominatedby statisticalerrors
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(noise)their usein theunfoldingmakesno sense A sharpcut-of afterindex j = 12 or evenafterindex

j = 10 will notremove ary usefulinformationfrom the measurementrhe unfoldingresultusingonly

measuredoeficientsc; upto j = 10 is shavn in Figure2c; comparedo Figure2bthelargefluctuations
aresuppressedndtheresultsseemgo beacceptableOf coursethefine structureof thetruedistribution

expressedy thetrue coeficientsb; with j > 10 is notincludedin the solutionandthis mayrepresena
bias.lIt is anunavoidablebiasbecausehesecoeficientscannotbemeasured.

The covariancematrix of the resultcanbe calculatedby standarderror propagation.However it
is clearthatthe covariancematrix is singularandhasonly rank 10 in this case becausehe 20 bins are
obtainedrom 10 measureaoeficients(10 degreesof freedom).This propertyis inherentto the cut-of
methodandto the regularizationmethod,and was alreadymentionedin [4]. Suchsingularity of the
covariancematrix canbeavoidedif thefinal transformations to anumberof binsidenticalto thedegree
of freedomspnly alimited numberof binscanbeobtainedn ameasuremenwith large mirationeffects.

This methodof usinga sharpcut-off hasto be comparedo theregularizationmethod.It hasbeen
shavn [4] thatthe useof a regularizationfunction of the type of equation(5) is equivalentto a smooth
cut-off; essentiallthe measureaoeficientsc; aremultiplied by afactordependingpn the cunvatureof
the orthogonakontritutions (seeSection3).1

3 THE PROPOSEDUNFOLDING METHOD

The methodproposedhereis similar to the methodusedin RUN; the differencesare emphasizedn
this section. It is expectedthat the proposedmodificationsresultsin more stablesolutions. The pro-
posedmethodrequiresa large numberof rows and columnsin the resolutionmatrix A. Like in RUN
the regularizationis determinedby the requirednumberof degreesof freedom,which determineshe
regularizationparameter

Figuresin this sectionrefer to the example alreadymentionedin Sectionl In a Monte Carlo
calculationof all threeeffects, limited (z-dependentacceptancenon-lineartransformatiorand finite
resolutionaresimulated.Detailson the function andthe distortingeffectsareidenticalto the published
exampled4]. In total 100000“events”aresimulatedfor “data” andfor theMC definingmatrix A. The
input function fuc(x) (equation(7)) is aconstant.

In RUN thediscretizatiorfor f(z) andfor A(y,z) wasdoneusingcubicB-splinefunctions;the
effectis the sameasfor simplehistogramspamely the integral equationis transformedo a systemof
linear equations.However the elementsf the vectorsare B-spline coeficientsinsteadof bin contents.
The advantageis that the parametrizedsolutionis a smoothfunction and the curvature as definedby
equation(5) canbeexactly written asa quadratidorm. However theaccurateleterminatiorof matrix A
requiresagoodMonte Carlostatistic.In RUN statisticalfluctuationsof the elementf matrix A could
notbetreated.

Simplehistogramareinsteadbroposedere;theelementof thevectory arebin contentginteger
numbers).The curvatureof the solutionis constructedy finite differencesthe secondierivative in bin
J is proportionalto z; 1 — 2z; + x;41. In a histogramsomeresolutionis lostif binswith awidth as
large as expectedfor the final resolutionwould be used. It is recommendedo useinitially m = 2ngy;
bins for & for a final numberof degreesof freedomof ng;. For ¢ alarger numberof binsn (> m) is

!Sometimeshe iterative solutionof unfolding problemsexpressedy the equationy = A is proposedn the literature
without explicit regularization startingfrom a“good” initial distributionfor . Of courseequationf this type (with asquare
matrix) have auniquesolutionanditerative solutionsareslow comparedo thedirectsolution;afteralargenumberof iterations
with corvergencethe sameunsatishctoryresultasby directsolutionwill beobtained However in theseproposalonly asmall
numberof iterationsis recommended It canbe shavn that iterative methodscanin factinclude animplicit regularization
[8]: thereis adifferentspeeddf convergencefor the variousorthogonalkontritutionsandthe small contrikutionswith a small
eigevalue will corverge very slowly. Thusafter a few iterationsthe (large) coeficients with large eigevaluesare already
accuratethe remainingcoeficients are still almostunchangedindthus,for a stop after few iterations,their valuesare still
closeto the startingvalues.Thereis of coursesomesubjectvity in stopping‘early” enough.
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recommendedo avoid alossof resolution. Thusthe numbern x m of elementss large, anda large
sampleof Monte Carlo eventsis requiredto fill the matrix A. The statisticalerror of the elementsz;;
eventuallycannotbe ngglected.

Standard Poissonmaximum lik elihoodfit. Ignoringinitially eventualstatisticalerrorsof theelements
a;; the expectednumberof eventsin bin i of y is given by y; = Z;-”:l a;j v; . For the expected
numbery;, asgivenby this expressionthe obsered valuesy; follows the Poissordistribution. Optimal
estimatedor theelements:; areobtainedoy minimizing the (negative) logarithmof thetotal likelihood
with respecto the elementsr; of vectorz, assuminghe Poissordistrikution:

n

[15.@)

=1

n

= (4 — i - Iny;) + const,, (10)
=1

Flz)=—-InL(z)=—-1n

wherethe constantermcontaininge.gy;! canbeommited.This expression(10) correctlyaccountslso
for binswith a smallnumberof histogramentriesy;.

An alternatve would be to usethe (linear) leastsquaresnethodwith singularvalue decomposi-
tion for the fit. However for small numberof entriesthe useof the Poissondistribution seemso be
essentialFurthermorehediagonalizatiorusedlaterin themethodis almostequialentto singularvalue
decompositior{eigevaluesarethe square®f the singularvalues).

Fitting with finite Monte Carlo samples. The problemof statisticalfluctuationsof the elementsa;;

hasbeenneglectedsofar A methodto treatthe problemwithin the maximum-likelihood methodhas
beendevelopedby R.Barlov andChr.Beestor{9]. In this methodthereis for eachsourcebin z; some
(unknawn) expectednumberof eventsA;;. For eachelement4;; thecorrespondingiumbera;; fromthe
Monte Carlo sampleis generatedby a distribution which is takento be Poissortoo. The nice featureof

this methodis thata biaswhichwould beintroducedby ignoringthestatisticalcharacteof the valuesof

theelementsy;; is avoidedandthe maximumlikelihooderroris morerealistic. A large numberof slack
variableg(onefor eachbin) is introducedandhasto betreatedn the optimzation.A new fastnumerical
solutionmethodhasbeendeveloped(see[1]).

Combining bins. Thelikelihoodfunctionis asumover all bins. Combiningalmostemptybinsdoesnot

introducea systematicerror The total numberof elementsof the matrix may be large, especiallyif z

and/ory aremultidimensionalanda small numberof entries(or even zero)in an elementmay not be
uncommon.The combinationof almostemptybinsis donewith a clusteralgorithm,takinginto account
thedistancebetweerbinsin one,two or threedimensions.

First option: shamp cut-off of orthogonal contributions. This methodis rathersimilar to the method
discussedn Section2. Thecomputationaproblemis to determinethe minimumof F'(x) (seeequation
(10)). Thestandardteratve methodis basedn therepresentatiofor the correctionAx

F(Az) = %AmTHAm +AzTg+ ... (11)

with the HessianH (matrix of secondderiativesof F/(Ax)) andthegradientvectorg (first derivatives
of F(Az)). A Newton stepis thencalulatedrom theequationH Az + g = 0. Corvergenceis usually
fastfor goodstartingvaluesandthe covariancematrixis equalto theinverseof the Hessian Thestarting
valuescanbecalculatedby alinearleastsquardit, basedntheapproximatiorof thePoissordistribution
by a Gaussiardistribution for eachbin.

A sharpcut-off asdiscussedn the exampleof Section2 requiresa diagonalizatiorof the sym-
metric matrix H by H = UD U” with a diagonalmatrix D anda transformationmatrix U. By a
transformation(rotation)in z-spacdinear combinationf the z-componentsre obtainedwith a dia-
gonalcovariancematrix, with variance®f thelinearcombinationgivenby theinverseof theeigewalues
of matrix D. A cut-of is doneat someindex j followed by transformatiorbackto the z-spaceof bin
contentausingthetransformatiormatrix U .
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Secondoption: regularization. In this option the regularizationis basedon the secondderiative of
theresultaccordingto equation(5), which canbe expressedy a quadratidform 2™ Cz with a positive-
semidefinitematrix C'. In principle the sameproceduras usedasin RUN; the mathematicatletailsare
givenelsavhere[4]. Herea simpleexplanationis givenon the standardnathematicabperation$ used.
Regularizationis doneby addingthetermr - 7 Cz to thefunction F(Ax) of equation(11). Exactlyas
in thefirst optionthe Hessians diagonalized.

H=-UDU", H'=UD 'UT = [UD’W] [D*WUT] . (12)

Up to this stepeverythingis identicalto the cut-of option. Using transformatiormatrix U D~'/? the
vector z is transformedo linear combinationsz, which are orthogonal,with all variancesequalto 1
(unit covariancematrix). Because¢he covariancematrixis equalto the unit matrix, every additionalpure
rotationwill notchangehe(unit) covariancematrix. In termsof thetransformedrectortheregularization
termcannow bewrittenin theform - 22 CyZ, whereCy; is thetransformecdturvaturematrix C. Now
anotheriagonalizatiorcanbe doneof matrix Cy:

r-2'Ce - 7B Cy=1- Uc SULZ (13)

with a diagonalmatrix S andarotationmatrix U . This diagonalizatiorcanbe usedto definea pure
rotationfrom thelinearcombinationz to anotheiinearcombinationz

z > z=ULZ. (14)

The componentf the new vector z still have the unit matrix as covariancematrix. The complete
transformatiorfrom « to z is the effect of the transformatiorby UD~'/? and by U ¢. Thealgebracan
be explainedin otherwords: the error ellipsoid relatedto the Hessianis first rotatedto have the axes
parallelto theaxesof thenew system By a changeof the scalegheellipsoidis transformedo a sphere,
whichwill remainaspherdor ary furtherrotation. A lastrotationis doneto bringthe axesinto theorder
of increasingcunature.

. transf(l)rmatioq vectorsl3 4 and 16

Fig. 4: Selectedcolumn vectorsof the completetrans-
formation matrix definedin the regularizationprocedure.
They correspondo the curvatureeigervaluesSss, Ss4 and
Sie,16. Visualizationis doneby curves interpolatingthe
components.The amplitudeassociatedvhich eachvector
all have the samestandardieviation of 1.

Somecolumnsof the complete(product)transformatiorare shavn in Figure4. All linearcom-
binationsobtainedhave the sameprecision(standardieviation of the coeficientis one). As seenin the
Figurelinearcombinationsvith largeindex 5 areoscillatingwith largeamplitude.Thediagonaklements
S;; arethe (statisticallyindependentgontrilutions of the elementsof z to the total curvature. Sorted
accordingo increasingalueof S;; thevalueof S;; will increaseatherfastwith increasingndex j. The
spectrunmof eigevaluessS; is shavn in Figure5. In termsof the linearcombinationse regularization
is simply givenby

~ 1 ~
(xj)re:] = (Tsjj) (xj)unreg : (15)
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Amplitudes before and after regularization
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Fig. 5: The eigevaluesafterthe curvaturetransformation Thevaluesarevery rapidly increasingor orthogonalcontrikutions
for increasingndex value(left). Theamplitudesbefore(left bars)andafterregularization(right bars). The statisticalerror of
all amplitudesis equalto 1, which is indicatedby the horizontalline. The vertical scaleis linear at the bottomandmakesa
transitionto alogarithmicscaleatthetop (right).

andthis simpleform is thereasorfor thetransformationsnadebefore.

Determination of the regularization parameters . Thefirst factors(small j) on theright-hand-side
of equation(15) will becloseto 1; for avaluer = 1/S thefactorwill be 1/2 andfor indicesj > k
will rapidly decrease@owardszero. The sumof all factorscanbe calledthe effectivenumberof degrees
of freedom,andcanbe usedto determinethe valueof theregularizationparameter from therequired
numberof degreesof freedom,i.e. theregularizationparametet- is determinedrom thevalueof ngs in
theequation

ndf = i (ﬁ) . (16)

=1

Thustherequirednumberof degreesof freedomhasto be specifiedanddetermineshe degreeof regu-
larization. Thisnumbercanbetakenfrom thespectrunof thecoeficientsor amplitudesshavn in Figure
5. Theinsignificantpart (large j) is clearly visible in the spectrumandseparatedrom the significant
part (small j). The selectedvalue of n4 shouldbe equalto or larger thanthe numberof significant
terms. The unrggularizedamplitudes which have standarddeviation one,are shavn by the left bars;
amplitudesabore index 15 are compatiblewith oneandrepresenhoise. They would however make a
large contritution to the solution, becausehe correspondingolumnvectors(Figure4) arelarge. The
regularizationeffectively dampsthe amplitude(right bars)aroundandabove index 15, which hasbeen
chosenasthe numberof degreesof freedomhere. The significantamplitudesare not affectedby the
regularization.

Thefinal resultof the example(measuredlistribution in Figurel) is shavn in Figure6. Theleft
figure shavs 30 datapointswith error barstogetherwith the original (true) distribution; within errors
theoriginal distribution is nicely reproducedThe rank of the covariancematrix is aboutl5, whichwas
chosenasthe effective numberof degreesof freedom;thusinversionof the covariancematrix, needed
e.g. for aleast-squardit of a modelto the data,is not possible.Althoughthe large numberof 30 data
points seemgto be attractve, the datapoints shouldbe reducedto 15 datapoints by combiningtwo
binsto one,which thenhave a full-rank covariancematrix. This setof datapointsis shavn in Figure6
(right). Thebroaderbinsof this setof datapointsarea consequencef thelimited acceptancandfinite
resolutionof the measurement.

2In a publicationthe methodhasbeendescribedto “have certain mathematicalcomplication®, but it is basedonly on
standardinearalgebraof symmetricmatrices.
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Fig. 6: The unfolding resultafter regularizationwith 15 degreesof freedomwith 30 bins (left) andwith 15 bins (right). For
comparisortheoriginal (true) distribution is shavn by a histogram.The datafrom Figurel areusedasinput.
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