Higher Order Moments of Momentum Spectra

Nick Brook

University of Bristol

- Introduction
- MLLA predictions
- Comparisons with e^+e^- & DIS data

Ian Skillicorn

UNIVERSITY of GLASGOW

Fragmentation Functions

D(ξ ,Q,A) not calculable in pQCD BUT know how to evolve in Q² $x_p = \frac{p}{p_{max}} = \frac{2p}{O} \qquad \qquad \xi = \log\left(\frac{1}{x_p}\right)$

For $e^+e^{-1} Q = \sqrt{s}$

For DIS: Q is the virtuality of the exchanged photon and p is measured in the current region of the Breit frame (where p_{max} is Q/2)

<u>The Breit Frame</u> Brickwall' frame

Phase space for $e^+e^$ annihilation evolves with Q/2 = $\sqrt{s/2}$

Current hemisphere of Breit frame evolves as Q/2

Current region $\equiv e^+e^$ annihilation

<u>Moments of ξ dist^{bn}</u>

MLLA theory assumes energy spectra - expt measure momenta

Khoze, Lupia & Ochs suggested (Phys Lett B386 1996 451) the cutoff in evolution can be related to an effective mass, m_{eff} , of the hadrons MLLA predictions for the Q evolution of moments (Dokshitzer et al, Int J Mod Phys A7 1992, 1875.)

Fong & Webber suggested region around peak can be described by a distorted Gaussian

Extract moments from fits to MLLA theoretical spectra and data in a consistent manner

(PLB 479 2000 173 & PLB 497 2001 55)

$$D(\xi, Q, \Lambda) \propto \exp\left[\frac{1}{8}k - \frac{1}{2}s\delta - \frac{1}{4}(2+k)\delta^{2} + \frac{1}{6}s\delta^{3} + \frac{1}{24}k\delta^{4}\right]$$

where $\delta = \frac{(\xi - \overline{\xi})}{\sigma}$

Scaled Momentum Distributions, ξ_p

Following the approach of Khoze et al., can relate a cutoff, Q_0 , in the parton evolution to the mass of hadrons, m_{eff} , and the MLLA spectra to expt. spectra:

$$\frac{1}{N}\frac{dn_h}{d\xi_p} \propto \frac{p_h}{E_h}\overline{D}(\xi,Q,\Lambda)$$

where

$$\xi = \log \left(\frac{Q}{\sqrt{Q^2 e^{-2\xi_p} + Q_0^2}} \right) \quad \& \quad E_h = \sqrt{p_h^2 + Q_0^2}$$

MLLA Spectra

•Typical hump back shape with dependence on energy, Q_0 & Λ

Introduce m_{eff}
Changes in RHS side of distorted Gaussian by

introducing m_{eff} term (i.e. momentum getting smaller)

·No longer displays usual truncation at large $\boldsymbol{\xi}$

MLLA Moments

•Marked difference between Dokshitzer et al & fit to MLLA spectra (calculating moments over whole range of spectra give same answer as analytic calculation)

•Important moments are calculated/extracted in consistent manner!!

•Different assumption in for small ξ account for difference between F&W and Dokshitzer et al ??

As Q[↑] all predictions
converge

— fit to MLLA spectra; … Dokshitzer et al analytic; ____Fong & Webber analytic

<u>Moments of Spectra &</u> <u>e⁺e⁻ Data</u>

MLLA-0 (no m_{eff} term - $Q_0 = \Lambda$)

--- MLLA-M (with m_{eff} term - m_{eff} = Q₀ = Λ)

Moments extracted from fit of distorted Gaussian to data BUT also to theory

•MLLA-O gives reasonable description of mean & skewness

•MLLA-0: σ is smaller & more platykurtic than data

•MLLA-M gives poorer description of all varaibles at low E_{CM}

•MLLA-M approaches MLLA-0 & data at high E_{CM}

<u>Moments of Spectra &</u> <u>DIS Data</u>

Moments extracted from fit of distorted Gaussian to data & theory curves

 $\cdot m_{\rm eff}$ allowed to be free parameter in fits to data

•MLLA-M & MLLA-O bracket the data. At high Q both approach the data

•Fit to DIS data Λ =280 MeV & m_{eff} = 230 MeV. Reasonable description of all variables except mean (and peak position)

$$\xi_{\max} = \overline{\xi} + \frac{\sigma}{s} \left(1 - \left(1 + s^2 \right)^{\frac{1}{2}} \right)$$

 $\dots Q_0 = \Lambda \neq m_{eff}$

<u>Summary</u>

·Care needs to be taken in choosing the range of $\boldsymbol{\xi}$ when comparing data & theory

•Wide discrepancy in higher order moments (skewness & kurtosis) between MLLA-M & MLLA-O and data. Predictions converge as Q \uparrow

·Limiting spectra preferred over truncated spectra ($Q_0 \neq \Lambda$) in comparison with data

 $\cdot m_{\rm eff}$ has a large effect at all but highest Q

•MLLA gives reasonable agreement with higher moments of data for fitted values of Λ and $m_{\rm eff}$