DF

D. Frekers University Münster

FACETS OF (d,²He) CHARGE-EXCHANGE REACTIONS: from few-body physics to astrophysics to double beta decay

astrophysics ! double-beta decay NN-studies

halo nuclei

stretched states

²He

Astrophysics

Isospin symmetry

Double beta decay

Few-body (a_{nn})

Quantum entanglement

d

³S

Halo nuclei

Double beta decay

²He

U

d

Nuclear double beta decay

Important $\beta\beta$ decay modes

 $(2\nu\beta\beta)$ e⁻ e⁻ р р W W ν ν n n **Dirac-Decay**

$\mathbf{O}_{\nu\beta\beta}$ -decay: half-life & neutrino mass

$$\begin{bmatrix} T_{1/2}^{00}(0^+ \rightarrow 0^+) \end{bmatrix}^{-1} = G^{00}(E_0, Z) \left| M_{GT}^{00} - \frac{g_V^2}{g_A^2} M_F^{00} \right|^2 \left\langle m_0 \right\rangle^2$$

measure! look up nuclear v
structure mass

$$M_{GT}^{00} = \left\langle f \left| \sum_{lk} \sigma_l \cdot \sigma_k \tau_l^+ \tau_k^+ H(r_{lk}, \overline{A}) \right| i \right\rangle$$
$$M_F^{00} = \left\langle f \left| \sum_{lk} \tau_l^+ \tau_k^+ H(r_{lk}, \overline{A}) \right| i \right\rangle$$

Neutrino potential (v's don't escape from nucleus)

$O_{V\beta\beta}$ -decay: half-life & neutrino mass

$$M_{GT}^{00} = \langle f | \sum_{lk} \sigma_{l} \cdot \sigma_{k} \tau_{l}^{+} \tau_{k}^{+} H(r_{lk}, A) | i \rangle$$

$$M_{F}^{00} = \langle f | \sum_{lk} \tau_{l}^{+} \tau_{k}^{+} H(r_{lk}, A) | i \rangle$$
Neutrino
potential
$$\int_{lk} \tau_{l}^{+} \tau_{k}^{+} H(r_{lk}, A) | i \rangle$$
Fexpand expression with H(r, A)
$$\int_{lk} r_{lk} small$$

$$\int_{lk} \tau_{l}^{+} \tau_{k}^{+} H(r_{lk}, A) | i \rangle$$
Many higher multipoles contribute!
$$[t_{1/2}^{(0v)}]^{-1} = G^{(0v)} | M_{GT}^{(0v)}|^{2} < m_{v} >^{2} + Fermi contribution$$

$$= G^{(0v)} | \sum_{m} \frac{<0_{g.s.}^{(f)} ||O_{GT}^{-}(r, S, L)||J_{m}^{m} > ^{2}}{1/2 Q_{\beta\beta}(0_{g.s.}^{(f)}) + E(J_{m}^{m}) - E_{0}} |^{2} < m_{v} >^{2}$$

Easier case: $2\nu\beta\beta$ Half-lives & Matrix elements $[t_{1/2}^{(2\nu)}]^{-1} = G^{(2\nu)} |M_{DGT}^{(2\nu)}|^2$ Half life: Half life:

ββ matrix element:

$$M_{DGT} = \sum_{m} \frac{\langle \mathbf{0}_{g.s.}^{(f)} || \sigma \tau^{-} || \mathbf{1}_{m}^{+} \rangle \langle \mathbf{1}_{m}^{+} || \sigma \tau^{-} || \mathbf{0}_{g.s.}^{(i)} \rangle}{1/2 \, \mathbf{Q}_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{M}_{i}}$$

All 1⁺ levels must be considered!

Approximation:

M_{DGT} ≅
$$\frac{M_S}{\Delta_S}$$

M_S: Single beta decay matrix elements ∆_S: Energy denominator

holds if

- only one strong 1+ intermediate state
- further excited states weak or E_X high

Measurement of $M_{DGT}^{(2\nu)}$ thru hadronic probes

$$M_{DGT} = \sum_{m} \frac{\langle \mathbf{0}_{g.s.}^{(f)} || \sigma \tau^{-} || \mathbf{1}_{m}^{+} \rangle \langle \mathbf{1}_{m}^{+} || \sigma \tau^{-} || \mathbf{0}_{g.s.}^{(i)} \rangle}{1/2 \ \mathbf{Q}_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{M}_{i}}$$
$$= \sum_{m} \frac{\mathbf{M}_{m}^{\mathbf{GT}^{+}} \ \mathbf{M}_{m}^{\mathbf{GT}^{-}}}{1/2 \ \mathbf{Q}_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{M}_{i}}$$

Measure B(GT+) through (n,p)-type reactions Measure B(GT-) through (p,n)-type reactions

$$B(GT) = \frac{1}{2J_{i} + 1} | M(GT) |^{2}$$
forward
angles
$$B(GT) = \widehat{\sigma}(GT) \frac{d\sigma(q=0)}{d\Omega}$$

- Phase cannot be measured
- Simple relation $\sigma \leftarrow B(GT)$
- Little model dependence

The 2ν double- β decay

 τ from counting experiments and as 2nd order weak process ($\beta^- \rightarrow \beta^-$) !!!

Half life:

$$[t_{1/2}]^{-1} = G^{(2_{v})} | M_{DGT} |^2$$

$$\begin{split} \mathbf{M}_{\text{DGT}} &= \\ \sum_{m} \frac{<\mathbf{0}_{\text{g.s.}}^{(f)} || \sigma \tau^{-} || \mathbf{1}_{m}^{+} > <\mathbf{1}_{m}^{+} || \sigma \tau^{-} || \mathbf{0}_{\text{g.s.}}^{(i)} >}{1/2 \ \mathbf{Q}_{\beta\beta}(\mathbf{0}_{\text{g.s.}}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{E}_{\mathbf{0}}} \\ \mathbf{G}^{(2v)} \sim (\mathbf{Q}_{\beta\beta})^{11} \end{split}$$

matrix elements available thru (p,n) and (n,p) type reactions

48<mark>SC -</mark> **48 48** 3

(p,n)

(n,p) How to connect these states ??

48 48<mark>Sc -</mark> 48 2-

(³He,t)

Higher lying states (E_x > 5 MeV)

Single state dominance and its oddeties

the conjecture

Case	B(GT ⁻)	B(GT ⁺)	M (DGT)	$T_{1/2}^{(2\nu)}$
				[10 ¹⁹ y]
direct	_	_	0.06	3.3
$(^{3}$ He,t)/ β^{-}	0.032	0.256	0.025	22
EC/ β ⁻	0.47	0.256	0.09	1.5
theory	1.165	0.065	0.07	2.4
(³ He, t)/(d, ² He)	0.061 [*]	1.09 [*]	0.05	4 .0

Westfälische Wilhelms-Universität Münster

double beta decay -- Majorana neutrino and atomic/nuclear state degeneracy

2v ββ decay rate: Q dependence : Z dependence: nuclear strucure:

Q¹⁰ (ordinary phase space) high-Z quenching (Coulomb effect) GT-quenching, Pauli-blocking at high A (N-Z large) state mismatch (re: ⁴⁸Ca!!)

Ον ββ decay rate:

above arguments are weakened but: ~ m_v²

theory:

needs the $2\nu\,\beta\beta$ decay for calcultating the 0ν variant

experiment: needs to detect sum energy of the 2 electrons ! are there other double beta decay variants ??

$\beta+\beta+decay$ $\beta+EC decay$ ECEC decay

 $2\nu \beta^+\beta^+$ decay rate: Q dependence :

> Z dependence: nuclear strucure:

2v or 0v experiment:

 β +EC case:

(Q - 4m_oc²)¹⁰ (ordinary phase space) energy penalty!!! high-Z enhancement (Coulomb effect) much reduced Pauli-blocking at high A (N-Z small)

very! low isotopic abundances vanishing decay rates 4 gamma's plus two beta's

not much different except energy penalty is only $2m_0c^2$

- 2v ECEC decay rate: Q dependence : moderate (ordinary phase space) no energy penalty!!!
 - ~ (aZ)⁶ electron density!!

nuclear strucure: much reduced Pauli-blocking at high A (N-Z small)

Z dependence:

can never detect the X-rays (Auger-electrons) estimated lifetime ~ 10 ^{30–32} y

Ov ECEC decay rates: (Ονγ ECEC--X-ray)

however:

tes: need an extra photon to carry away energy ay) ~ (α/Q)² i.e. need low Q !!
 ~ (αZ)⁶ electron density no phase space factor estimated lifetime ~ 10³⁰⁻³² y
 there is a resonant enhancement if the Q-value matches the atomic excitation

$\beta+\beta+$ decay nuclei(6)

transition	Q-value	final states in daughter	isotopic abundance
78 Kr $ ightarrow ^{78}$ Se	2.868	many	0.35%
96 Ru $ ightarrow$ 96 Mo	2.725	many	5.52%
106 Cd $ ightarrow$ 106 Pd	2.770	many	1.25%
¹²⁴ Xe \rightarrow ¹²⁴ Te	2.865	many	0.10%
¹³⁰ Ba $ ightarrow$ 130Xe	2.610	many	0.11%
¹³⁶ Ce $ ightarrow$ ¹³⁶ Ba	2.400	many	0.20%

energy penalty $\beta^+\beta^+$: $4m_0c^2 = 2.044$ MeV energy penalty β^+EC : $2m_0c^2 = 1.022$ MeV energy penalty EC EC: none

decay rate $\Gamma(\beta^+\beta^+) \sim (Q - 4m_0c^2)^{10}$

β +EC decay nuclei (13)

transition	Q-value	final states in daughter	isotopic abundance
58 Ni $ ightarrow ^{58}$ Fe	1.924	g.s., 0.810 (2+) ,1.674 (2+)	68.08%
$^{64}Zn ightarrow ^{64}Ni$	1.097	g.s.	48.60%
74 Se $ ightarrow$ 74 Ge	1.209	g.s., 0.595 (2+) , 1.204 (2+)	0.89%
84 Sr $ ightarrow$ 84 Kr	1 .789	g.s., 0.881 (2+)	0.56%
$^{92}Mo \rightarrow ^{92}Zr$	1.649	g.s., 0.934 (2+) , 1.382 (0+) , 1.495 (4+)	14.84%
¹¹² Sn \rightarrow ¹¹² Cd	1.923	many	0.97%
¹²⁰ Te \rightarrow ¹²⁰ Sn	1.703	g.s. ,1.171 (2+)	0.09%
144 Sm $ ightarrow$ 144Nd	1.781	g.s. ,0.696 (3-) ,1.314 (4+) ,1.510 (3-) ,1.561 (2+)	3.10%
150 Gd $ ightarrow$ 150 Sm	1.290	many	α -decay 10 ⁶ y
156 Dy $ ightarrow$ 156 Gd	2.010	many	0.06%
$^{162}Er \rightarrow ^{162}Dy$	1.845	many	0.14%
$168\gamma_{b}$ \rightarrow $168Er$	1.422	many	0.13%
174 Hf $ ightarrow$ 174 Yb	1.102	many	0.16%

energy penalty β^+ EC : $2m_0c^2 = 1.022$ MeV

energy penalty EC EC: none -- decay rate $\Gamma(ECEC) \sim (\alpha Z)^6$

ECEC decay nuclei (12)

transition	Q-value	final states in daughter	isotopic abundance
36 Ar $ ightarrow$ 36 S	0.434	g.s. (0+)	0.34%
40 Ca $ ightarrow$ 40 Ar	0.193	g.s. (0+)	96.94%
54 Fe $ ightarrow ^{54}$ Cr	0.681	g.s. (0+)	5.80%
$108 Cd \rightarrow 108 Pd$	0.259	g.s. (0+)	0.89%
$126\chi_{e} \rightarrow 126T_{e}$	0.897	g.s. (0+) . 0.666 (2+)	0.09%
$^{132}Ba \rightarrow ^{132}Xe$	0.841	g.s. (0+) . 0.668 (2+)	0.10%
¹³⁸ Ce \rightarrow ¹³⁸ Ba	0.693	g.s. (0+)	71.70%
152Gd $ ightarrow$ 152Sm	0.056	g.s. (0+)	0.20%
158 Dy \rightarrow 158 Gd	0.284	g.s. (0+) .0.079 (2+) .0.261 (4+)	0.10%
$164 Er \rightarrow 164 Dy$	0.024	g.s. (0+)	1.61%
$180 W \rightarrow 180 Hf$	0.145	g.s. (0+) . 0.093 (2+)	0.13%
$196 Hg \rightarrow 196 Pt$	0.820	g.s. (0+) .0.355 (2+) .0.689 (2+)	0.15%

energy penalty EC EC: none

decay rate $\Gamma \sim (\alpha Z)^6 (\alpha/Q)^2$ (e-density x photon propagator)

state degeneracy and the special case of ⁷⁴Se for a <u>Majorana neutrino signature</u>

74Se and Majorana neutrino signature

estimated lifetime for 0vECEC decay: 10²⁰ - 10²⁵ y possible (0.2 - 10⁴ cts/day/kmol) x |m_v(eV)|²)

need desperately theory support !! (present calculations from S. Wycech to be refined)

