# Determination of Higgs Couplings at LHC $\oplus$ ILC

Sven Heinemeyer, CERN

SLAC, 03/2005

based on collaboration with K. Desch, M. Dührssen, H. Logan, D. Rainwater, G. Weiglein, D. Zeppenfeld

- 1. Motivation
- 2. Higgs coupling determination at the LHC
- 3. Higgs coupling determination at the ILC
- **4**. LHC ⊕ ILC
- 5. Conclusions

# 1. Motivation

Higgs field in the SM:

$$\Phi = \begin{pmatrix} 0 \\ v + H \end{pmatrix} \quad \text{(unitary gauge)}$$

*H*: elementary scalar field, <u>Higgs boson</u>

Lagrange density:  $\mathcal{L}_{\text{Higgs}} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - V(\Phi)$ 

Gauge invariant coupling to gauge fields ⇒ mass terms for gauge bosons and fermions

1.)  $VV\Phi\Phi$  coupling:



⇒ VV mass terms ⇒ triple/quartic couplings to gauge bosons  $g_2^2 v^2/2 \equiv M_W^2$ ,  $(g_1^2 + g_2^2) v^2/2 \equiv M_Z^2$  ⇒ coupling ∝ masses

## 2.) fermion mass terms: Yukawa couplings



 $m_f = v g_f \Rightarrow \text{coupling} \propto \text{masses}$ 

3.) mass of the Higgs boson: self coupling



$$\lambda = M_H^2/v$$
  
 $M_H = v\sqrt{\lambda}$  free parameter  
last unknown parameter of the SN

wn parameter of the

 $\Rightarrow$  establish Higgs mechanism  $\equiv$  find the Higgs  $\oplus$  measure its couplings

Higgs coupling measurements is one of the main tasks of future colliders

#### 2. Higgs coupling determination at the LHC

[M. Dührrsen, S.H., H. Logan, D. Rainwater, G. Weiglein, D. Zeppenfeld '04]

#### Higgs production at the LHC:



gluon fusion:  $gg \rightarrow H$ 

weak boson fusion (WBF):  $q\bar{q} \rightarrow q'\bar{q}'H$ 

top quark associated production:  $gg, q\bar{q} \rightarrow t\bar{t}H$ 

weak boson associated production:  $q\bar{q}' \rightarrow WH, ZH$ 

#### Some LHC specifics:

No LHC analogue to recoil method at LEP/LC:  $e^+e^- \rightarrow ZH$ ,  $Z \rightarrow e^+e^-$ ,  $\mu^+\mu^ \Rightarrow$  no total measurement of Higgs production cross section

QCD backgrounds  $\Rightarrow$  not all decay modes accessible, e.g.  $H \rightarrow b\overline{b}$ 

Measurement of  $\sigma \times BR$ : narrow width approximation:

$$\Rightarrow \sigma(H) \times \mathsf{BR}(H \to d_1 d_2) = \frac{\sigma(H)^{\mathsf{SM}}}{\Gamma_{\mathsf{prod}}^{\mathsf{SM}}} \times \frac{\Gamma_{\mathsf{prod}} \Gamma_{\mathsf{decay}}}{\Gamma_{\mathsf{tot}}}$$

Observation of different channels (or upper bound from non-observation)  $\Rightarrow$  information on combinations of  $\Gamma_b, \Gamma_\tau, \Gamma_W, \Gamma_Z, \Gamma_g, \Gamma_\gamma, Y_t^2$ 

 $\Rightarrow$  Determination of ratios of partial width via global fit [*M. Dührssen '03*]

# ⇒ Additional theoretical assumptions needed for absolute determination of partial widths

## Strategy: mild theoretical assumptions

- → consider general multi-Higgs-doublet model (w/o additional Higgs singlets) (⇒ including e.g. MSSM)
- ⇒ HVV coupling bounded from above by SM value,  $\Gamma_V \leq \Gamma_V^{SM}$ , V = W, Z⇒ upper bound on  $\Gamma_V$

Observation of Higgs production  $\Rightarrow$  lower bound on production couplings lower bound on total width  $\Gamma_{tot}$ 

Observation of  $H \rightarrow VV$  in WBF  $\Rightarrow$  determines  $\Gamma_V^2/\Gamma_{tot}$  $\Rightarrow$  determines lower bound on  $\Gamma_{tot}$ 

 $\Rightarrow$  Absolute determination of  $\Gamma_{tot}$  and Higgs couplings via global fit

 $\Rightarrow$  nearly model independent analysis

# Statistical errors:

Assume SM rates for production and decay in each luminosity scenario

# Systematic errors:

- 5% luminosity error
- uncertainties on reconstruction: identification of leptons: 2%

identification of photons: 2% identification of *b* quarks: 3%

- forward tagging/veto jets: 5%
- error propagation for background determination from side-band analyses: from 0.1% ( $H \rightarrow \gamma \gamma$ ) to 5% ( $H \rightarrow WW^*, H \rightarrow \tau^+ \tau^-$ )
- theoretical and parametric uncertainties for Higgs production: ggH: 20%,  $t\bar{t}H$ : 15%, WH, ZH: 7%, WBF: 4%
- theoretical and parametric uncertainties on Higgs decays:
  1% (as a future expectation)

# $\Rightarrow$ log likelihood function based on statistical and systematic errors

#### Decay channels considered:

- $H \rightarrow W^{+(*)}W^{-(*)} \rightarrow l^{+}l^{-} + p_{T,miss}$  $H \rightarrow Z^{(*)}Z^{(*)}$  $H \rightarrow \gamma\gamma$  $H \rightarrow \tau^{+}\tau^{-}$
- $t\overline{t}H$ ,  $H \rightarrow b\overline{b}$

Actual analysis assumptions (even less restrictive):

$$g_{HVV}^2 \le 1.05 \times g_{HVV,\text{SM}}^2, \quad V = W, Z$$

5% margin to allow for

- theoretical uncertainties in translation of partial widths to  $g^2_{HVV}$ 

- small admixtures of exotic states (triplets, ...)
- Allow for additional particles contributing to  $H \to \gamma \gamma$  and  $gg \to H$ ( $\Rightarrow$  fitted by pos. /neg. additional partial width to  $H \to \gamma \gamma$  and  $gg \to H$ )
- Allow for additional Higgs decay width
  - $(\Rightarrow$  fitted by additional partial width)

#### Constraints on extra partial widths:



Detection of SM rates  $\Rightarrow$  constraints on widths:  $2 * 300 + 2 * 100 \text{ fb}^{-1}$  scenario:  $\Delta \Gamma_{\gamma} \leq 0.2 imes \Gamma_{\gamma}^{\mathsf{SM}}$  $\Delta \Gamma_{g} \leq 0.4 imes \Gamma_{g}^{\mathsf{SM}}$  $\Delta\Gamma_{inv} \leq 0.2 \times \Gamma_{tot}^{SM}$  $\Rightarrow$  restrictions on new physics

#### Relative precisions for partial and total widths: two scenarios



#### Observations:

```
low luminosity scenario: 2 * 30 \text{ fb}^{-1}:
```

for a light Higgs: results significantly worse as compared to higher luminosity scenario

high(er) luminosity scenario:  $2 * 300 + 2 * 100 \text{ fb}^{-1}$ :

- typical accuracies of 20-30% for  $m_H \leq$  150 GeV
- -10% accuracies for HVV couplings above WW threshold

high luminosity scenario:  $2 * 300 \text{ fb}^{-1}$ :

significant improvement over 2 \* 300 + 2 \* 100 fb<sup>-1</sup> only in  $H\tau\tau$  coupling (WBF crucial for  $H \rightarrow \tau^+ \tau^-$ )

Systematic errors contribute up to half of the total error, especially at high luminosity

#### 3. Higgs coupling determination at the ILC

[TESLA TDR '01] [Abe et al. '01] [Abe et al. '01] [T. Barklow '03]

Higgs production at the ILC:



#### Some ILC specifics:

recoil method:  $e^+e^- \rightarrow ZH$ ,  $Z \rightarrow e^+e^-$ ,  $\mu^+\mu^-$ 

 $\Rightarrow$  total measurement of Higgs production cross section

⇒ NO additional theoretical assumptions needed for absolute determination of partial widths

 $\Rightarrow$  all observable channels can be measured with high accuracy

Some ILC results (500 fb<sup>-1</sup> $@\sqrt{s} = 350$  GeV):

 $\delta M_H \approx 50 \text{ MeV}$   $\delta g_{ZZH} \approx 2.5\%, \quad \delta g_{WWH} \approx 2-5\%$  $\delta g_{Hb\bar{b}} \approx 1-2\% \text{ (for } M_H \lesssim 150 \text{ GeV)}$ 

<u>However</u>: No good determination of  $g_{Ht\bar{t}}$  and  $g_{H\gamma\gamma}$  $\delta g_{Ht\bar{t}} = ?$ ,  $\delta g_{H\gamma\gamma} = 23\%$  (for  $M_H = 120 \text{ GeV}$ )

# **4. LHC ⊕ ILC**

Idea: use data from the 350 GeV ILC to replace theory assumptions in LHC analysis

 $\Rightarrow$  better determination of  $g_{Ht\bar{t}}$  and  $g_{H\gamma\gamma}$ 

(in a model independent analysis)

Existing result: [K. Desch, M. Schumacher '04] LHC:  $t\bar{t}H \rightarrow t\bar{t}WW^*$ ,  $t\bar{t}b\bar{b}$  (300 fb<sup>-1</sup>) ILC: BR( $H \rightarrow WW^*$ ), BR( $H \rightarrow b\bar{b}$ ) (500 fb<sup>-1</sup> @  $\sqrt{s} = 500$  GeV)

 $\Rightarrow$  fit for  $g_{Ht\overline{t}}$ 

 $\rightarrow \mathsf{T}$ 

 $\Rightarrow$  determination of  $g_{Ht\bar{t}}$  to 15%

Fit for  $g_{Ht\bar{t}}$ :

[K. Desch, M. Schumacher '04]



 $\rightarrow$  Use more ILC input and all LHC channels in a combined fit

Inputs from the ILC to the fit:

 $-M_H$ 

-  $\sigma_{\rm tot}(e^+e^- \to HZ)$ 

$$- \sigma_{\text{tot}}(e^+e^- \to HZ) \times \mathsf{BR}(H \to X) \quad (X = b\overline{b}, \ \tau^+\tau^-, \ gg, \ WW^*)$$

$$- \sigma_{\text{tot}}(e^+e^- \to \nu\bar{\nu}H) \times \mathsf{BR}(H \to b\bar{b})$$

 $\Rightarrow (hopefully) better determination of g_{Ht\bar{t}}, g_{H\gamma\gamma}$ (in a model independent way!)

#### WARNING: results still preliminary

# Compare old and new results for $g_{Ht\bar{t}}$ :



# New results for $g_{Ht\bar{t}}$ :



Note: we show  $\Delta g^2$ [K. Desch, M. Schumacher '04] show  $\Delta g$ 

drastic improvement in all channels due to ILC input (often ILC precision)

 $\Rightarrow$  determination of  $g_{Ht\bar{t}}$  to 11-14%

 $\Rightarrow$  somewhat better than other analysis

#### Compare old and new results for $g_{H\gamma\gamma}$ : T(predicted) G(predicted) 80 - G<sub>inv.</sub> / G<sub>H</sub> ∏(new) G(new) $-G_{\gamma}(\text{new}) / G_{\gamma}(W,t)$ $\dots \Gamma_{a}(new) / \Gamma_{a}(t)$ $\dots$ $G_q(new) / G_q(t)$ 0.6 0.6 0.4 0.4 0.2 0.2

-0.2

-0.4

-0.6

Sven Heinemeyer, LHC/ILC meeting, SLAC, 23.03.2005

110 120 130 140 150 160 170 180 190

2 Experiments

L dt=2\*300 fb <sup>-1</sup>

m<sub>н</sub> [GeV]

WBF: 2\*100 fb <sup>-1</sup>

0

-0.2

-0.4

-0.6

m<sub>H</sub> [GeV]

 $\Gamma_{\gamma}(\text{new}) / \Gamma_{\gamma}(W,t)$ 

**2** Experiments

L dt=2\*300 fb<sup>-1</sup>

WBF: 2\*100 fb<sup>-1</sup>

110 120 130 140 150 160 170 180 190

New results for  $g_{H\gamma\gamma}$ :



 $\Rightarrow$  determination of  $g_{H\gamma\gamma}$  to  $\sim 7-8\%$ 

 $\Rightarrow$  ILC input helps at lower  $M_H$  values

# 5. Conclusions

• Higgs coupling determination at the LHC:

coupling determination necessary to establish the Higgs mechanism

- $\rightarrow$  nearly model independent analysis  $\Rightarrow$  coupling determination down to 20-40%
- Idea: use ILC input to overcome theory assumptions
- ILC input from 500 fb $^{-1}$  @  $\sqrt{s} = 350$  GeV

 $(\rightarrow$  ILC will determine nearly all couplings model independent with a high accuracy)

- However: no good ILC ( $\sqrt{s} \lesssim 500$  GeV) precision for  $g_{Ht\bar{t}}$  and  $g_{H\gamma\gamma}$
- New (preliminary) result:

 $\Delta g_{Ht\bar{t}} = 11 - 14\% \quad \text{(old LHC/ILC analysis: 13-19\%)}$  $\Delta g_{H\gamma\gamma} = 7 - 8\% \quad \text{(old LHC analysis: 8-30\%)}$